{"title":"氧进化反应非贵金属催化剂的最新进展:聚焦过渡和稀土元素。","authors":"Jala Bib Khan, Yuan-Chang Liang","doi":"10.1002/tcr.202400151","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for renewable energy sources has become more urgent due to climate change and environmental pollution. The oxygen evolution reaction (OER) plays a crucial role in green energy sources. This article primarily explores the potential of using non-noble metals, such as transition and rare earth metals, to enhance the efficiency of the OER process. Due to their cost-effectiveness and unique electronic structure, these non-noble metals could be a game-changer in the field. 'Doping,' which is the process of adding a small amount of impurity to a material to alter its properties, and 'synergistic effects,' which refer to the combined effect of two or more elements that is greater than the sum of their individual effects, are two key concepts in this field. Transition and rare earth metals can reduce the overpotential, a measure of the excess potential required to drive a reaction, thus enhancing the OER process by engineering the electronic and surface molecular structure. This article summarizes the roles of various non-noble metals in the OER process and highlights opportunities for researchers to propose innovative ways to optimize the OER process.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202400151"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress in Non-Noble Metal Catalysts for Oxygen Evolution Reaction: A Focus on Transition and Rare-Earth Elements.\",\"authors\":\"Jala Bib Khan, Yuan-Chang Liang\",\"doi\":\"10.1002/tcr.202400151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The demand for renewable energy sources has become more urgent due to climate change and environmental pollution. The oxygen evolution reaction (OER) plays a crucial role in green energy sources. This article primarily explores the potential of using non-noble metals, such as transition and rare earth metals, to enhance the efficiency of the OER process. Due to their cost-effectiveness and unique electronic structure, these non-noble metals could be a game-changer in the field. 'Doping,' which is the process of adding a small amount of impurity to a material to alter its properties, and 'synergistic effects,' which refer to the combined effect of two or more elements that is greater than the sum of their individual effects, are two key concepts in this field. Transition and rare earth metals can reduce the overpotential, a measure of the excess potential required to drive a reaction, thus enhancing the OER process by engineering the electronic and surface molecular structure. This article summarizes the roles of various non-noble metals in the OER process and highlights opportunities for researchers to propose innovative ways to optimize the OER process.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":\" \",\"pages\":\"e202400151\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/tcr.202400151\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202400151","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
由于气候变化和环境污染,对可再生能源的需求变得更加迫切。氧进化反应(OER)在绿色能源中发挥着至关重要的作用。本文主要探讨了使用过渡金属和稀土金属等非贵金属来提高氧进化反应过程效率的潜力。由于其成本效益和独特的电子结构,这些非贵金属可能会改变该领域的游戏规则。掺杂 "和 "协同效应 "是这一领域的两个关键概念。"掺杂 "是指在材料中添加少量杂质,以改变其特性;"协同效应 "是指两种或两种以上元素的综合效应大于其单独效应的总和。过渡金属和稀土金属可以降低过电位,过电位是衡量驱动反应所需的过剩电位的一个指标,因此可以通过对电子和表面分子结构进行工程设计来增强 OER 过程。本文总结了各种非贵金属在 OER 过程中的作用,并强调了研究人员提出优化 OER 过程的创新方法的机会。
Recent Progress in Non-Noble Metal Catalysts for Oxygen Evolution Reaction: A Focus on Transition and Rare-Earth Elements.
The demand for renewable energy sources has become more urgent due to climate change and environmental pollution. The oxygen evolution reaction (OER) plays a crucial role in green energy sources. This article primarily explores the potential of using non-noble metals, such as transition and rare earth metals, to enhance the efficiency of the OER process. Due to their cost-effectiveness and unique electronic structure, these non-noble metals could be a game-changer in the field. 'Doping,' which is the process of adding a small amount of impurity to a material to alter its properties, and 'synergistic effects,' which refer to the combined effect of two or more elements that is greater than the sum of their individual effects, are two key concepts in this field. Transition and rare earth metals can reduce the overpotential, a measure of the excess potential required to drive a reaction, thus enhancing the OER process by engineering the electronic and surface molecular structure. This article summarizes the roles of various non-noble metals in the OER process and highlights opportunities for researchers to propose innovative ways to optimize the OER process.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.