{"title":"基于有序模糊决策系统的供应链管理供应商评估方法。","authors":"Katarzyna Rudnik, Anna Chwastyk, Iwona Pisz","doi":"10.3390/e26100860","DOIUrl":null,"url":null,"abstract":"<p><p>The selection of suppliers represents a pivotal aspect of supply chain management and has a considerable impact on the success and competitiveness of the organization in question. The selection of a suitable supplier is a multi-criteria decision making (MCDM) problem based on a number of qualitative, quantitative, and even conflicting criteria. The aim of this paper is to propose a novel MCDM approach dedicated to the supplier evaluation problem using an ordered fuzzy decision making system. This study uses a fuzzy inference system based on IF-THEN rules with ordered fuzzy numbers (OFNs). The approach employs the concept of OFNs to account for potential uncertainty and subjectivity in the decision making process, and it also takes into account the trends of changes in assessment values and entropy in the final supplier evaluation. This paper's principal contribution is the development of a knowledge base and the demonstration of its application in an ordered fuzzy expert system for multi-criteria supplier evaluation in a dynamic and uncertain environment. The proposed system takes into account the dynamic changes in the value of assessment parameters in the overall supplier assessment, allowing for the differentiation of suppliers based on current and historical data. The utilization of OFNs in a fuzzy model then allows for a reduction in the complexity of the knowledge base in comparison to a classical fuzzy system and makes it more accessible to users, as it requires only basic arithmetic operations in the inference process. This paper presents a comprehensive framework for the assessment of suppliers against a range of criteria, including local hiring, completeness, and defect factors. Furthermore, the potential to integrate sustainability and ESG (environmental, social, and corporate governance) criteria in the assessment process adds value to the decision making framework by adapting to current trends in supply chain management.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507921/pdf/","citationCount":"0","resultStr":"{\"title\":\"Approach Based on the Ordered Fuzzy Decision Making System Dedicated to Supplier Evaluation in Supply Chain Management.\",\"authors\":\"Katarzyna Rudnik, Anna Chwastyk, Iwona Pisz\",\"doi\":\"10.3390/e26100860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The selection of suppliers represents a pivotal aspect of supply chain management and has a considerable impact on the success and competitiveness of the organization in question. The selection of a suitable supplier is a multi-criteria decision making (MCDM) problem based on a number of qualitative, quantitative, and even conflicting criteria. The aim of this paper is to propose a novel MCDM approach dedicated to the supplier evaluation problem using an ordered fuzzy decision making system. This study uses a fuzzy inference system based on IF-THEN rules with ordered fuzzy numbers (OFNs). The approach employs the concept of OFNs to account for potential uncertainty and subjectivity in the decision making process, and it also takes into account the trends of changes in assessment values and entropy in the final supplier evaluation. This paper's principal contribution is the development of a knowledge base and the demonstration of its application in an ordered fuzzy expert system for multi-criteria supplier evaluation in a dynamic and uncertain environment. The proposed system takes into account the dynamic changes in the value of assessment parameters in the overall supplier assessment, allowing for the differentiation of suppliers based on current and historical data. The utilization of OFNs in a fuzzy model then allows for a reduction in the complexity of the knowledge base in comparison to a classical fuzzy system and makes it more accessible to users, as it requires only basic arithmetic operations in the inference process. This paper presents a comprehensive framework for the assessment of suppliers against a range of criteria, including local hiring, completeness, and defect factors. Furthermore, the potential to integrate sustainability and ESG (environmental, social, and corporate governance) criteria in the assessment process adds value to the decision making framework by adapting to current trends in supply chain management.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26100860\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26100860","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Approach Based on the Ordered Fuzzy Decision Making System Dedicated to Supplier Evaluation in Supply Chain Management.
The selection of suppliers represents a pivotal aspect of supply chain management and has a considerable impact on the success and competitiveness of the organization in question. The selection of a suitable supplier is a multi-criteria decision making (MCDM) problem based on a number of qualitative, quantitative, and even conflicting criteria. The aim of this paper is to propose a novel MCDM approach dedicated to the supplier evaluation problem using an ordered fuzzy decision making system. This study uses a fuzzy inference system based on IF-THEN rules with ordered fuzzy numbers (OFNs). The approach employs the concept of OFNs to account for potential uncertainty and subjectivity in the decision making process, and it also takes into account the trends of changes in assessment values and entropy in the final supplier evaluation. This paper's principal contribution is the development of a knowledge base and the demonstration of its application in an ordered fuzzy expert system for multi-criteria supplier evaluation in a dynamic and uncertain environment. The proposed system takes into account the dynamic changes in the value of assessment parameters in the overall supplier assessment, allowing for the differentiation of suppliers based on current and historical data. The utilization of OFNs in a fuzzy model then allows for a reduction in the complexity of the knowledge base in comparison to a classical fuzzy system and makes it more accessible to users, as it requires only basic arithmetic operations in the inference process. This paper presents a comprehensive framework for the assessment of suppliers against a range of criteria, including local hiring, completeness, and defect factors. Furthermore, the potential to integrate sustainability and ESG (environmental, social, and corporate governance) criteria in the assessment process adds value to the decision making framework by adapting to current trends in supply chain management.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.