{"title":"带重传的编码调制的有限块长分析。","authors":"Ming Jiang, Yi Wang, Fan Ding, Qiushi Xu","doi":"10.3390/e26100863","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid developments of 5G and B5G networks have posed higher demands on retransmission in certain scenarios. This article reviews classical finite-length coding performance prediction formulas and proposes rate prediction formulas for coded modulation retransmission scenarios. Specifically, we demonstrate that a recently proposed model for correcting these prediction formulas also exhibits high accuracy in coded modulation retransmissions. To enhance the generality of this model, we introduce a range variable Pfinal to unify the predictions with different SNRs. Finally, based on simulation results, the article puts forth recommendations specific to retransmission with a high spectral efficiency.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506917/pdf/","citationCount":"0","resultStr":"{\"title\":\"Finite-Blocklength Analysis of Coded Modulation with Retransmission.\",\"authors\":\"Ming Jiang, Yi Wang, Fan Ding, Qiushi Xu\",\"doi\":\"10.3390/e26100863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid developments of 5G and B5G networks have posed higher demands on retransmission in certain scenarios. This article reviews classical finite-length coding performance prediction formulas and proposes rate prediction formulas for coded modulation retransmission scenarios. Specifically, we demonstrate that a recently proposed model for correcting these prediction formulas also exhibits high accuracy in coded modulation retransmissions. To enhance the generality of this model, we introduce a range variable Pfinal to unify the predictions with different SNRs. Finally, based on simulation results, the article puts forth recommendations specific to retransmission with a high spectral efficiency.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506917/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26100863\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26100863","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Finite-Blocklength Analysis of Coded Modulation with Retransmission.
The rapid developments of 5G and B5G networks have posed higher demands on retransmission in certain scenarios. This article reviews classical finite-length coding performance prediction formulas and proposes rate prediction formulas for coded modulation retransmission scenarios. Specifically, we demonstrate that a recently proposed model for correcting these prediction formulas also exhibits high accuracy in coded modulation retransmissions. To enhance the generality of this model, we introduce a range variable Pfinal to unify the predictions with different SNRs. Finally, based on simulation results, the article puts forth recommendations specific to retransmission with a high spectral efficiency.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.