Siyu Pu, Zhibo Wang, Xueyang Tang, Daoxi Wang, Xiaodong Yang, Jun Jiang, Yifan Deng, Bo Xiang, Jiayin Yang, Xiaoli Wang, Xuesong Guo, Miao Sun, Bin Wang, Jing Chen
{"title":"前轴多指畸形的遗传分析:在 102 例中国人队列中鉴定新型变异和 ZRS 重复的作用。","authors":"Siyu Pu, Zhibo Wang, Xueyang Tang, Daoxi Wang, Xiaodong Yang, Jun Jiang, Yifan Deng, Bo Xiang, Jiayin Yang, Xiaoli Wang, Xuesong Guo, Miao Sun, Bin Wang, Jing Chen","doi":"10.1007/s00439-024-02709-7","DOIUrl":null,"url":null,"abstract":"<p><p>Preaxial polydactyly (PPD) is a congenital limb malformation, previously reported to be caused primarily by variants in the ZRS and upstream preZRS regions. This study investigated genetic variations associated with PPD, focusing on point variants and copy number variations (CNVs) in the ZRS and preZRS regions. Comprehensive genetic analyses were conducted on 102 patients with PPD, including detailed clinical examinations and Sanger sequencing of the ZRS and preZRS regions. Additionally, real-time quantitative PCR (qPCR) was used to detect CNVs in the ZRS region. The evolutionary conservation and population frequencies of identified variants were also evaluated. Six point variants were identified, among which four are likely pathogenic novel variants: 93G > T (g.156584477G > T), 106G > A (g.156584464G > A), 278G > A (g.156584292G > A), and 409A > C (g.156585378A > C). Additionally, qPCR analysis revealed that 66.67% of patients exhibited ZRS duplications. Notably, these duplications were also present in cases with newly identified potential pathogenic point variants. These findings suggest the possible interaction of point variants in ZRS and preZRS through a common pathogenic mechanism, leading jointly to PPD. The findings expand the variant spectrum associated with non-syndromic polydactyly and highlight that, despite different classifications, anterior polydactyly caused by variants in ZRS and nearby regions may share common pathogenic mechanisms. The incorporation of various variant types in genetic screening can effectively enhance the rate of pathogenic variant detection and contribute to the cost-effectiveness of genetic testing for limb developmental defects, thereby promoting healthy births.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"1433-1444"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic analysis of preaxial polydactyly: identification of novel variants and the role of ZRS duplications in a Chinese cohort of 102 cases.\",\"authors\":\"Siyu Pu, Zhibo Wang, Xueyang Tang, Daoxi Wang, Xiaodong Yang, Jun Jiang, Yifan Deng, Bo Xiang, Jiayin Yang, Xiaoli Wang, Xuesong Guo, Miao Sun, Bin Wang, Jing Chen\",\"doi\":\"10.1007/s00439-024-02709-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preaxial polydactyly (PPD) is a congenital limb malformation, previously reported to be caused primarily by variants in the ZRS and upstream preZRS regions. This study investigated genetic variations associated with PPD, focusing on point variants and copy number variations (CNVs) in the ZRS and preZRS regions. Comprehensive genetic analyses were conducted on 102 patients with PPD, including detailed clinical examinations and Sanger sequencing of the ZRS and preZRS regions. Additionally, real-time quantitative PCR (qPCR) was used to detect CNVs in the ZRS region. The evolutionary conservation and population frequencies of identified variants were also evaluated. Six point variants were identified, among which four are likely pathogenic novel variants: 93G > T (g.156584477G > T), 106G > A (g.156584464G > A), 278G > A (g.156584292G > A), and 409A > C (g.156585378A > C). Additionally, qPCR analysis revealed that 66.67% of patients exhibited ZRS duplications. Notably, these duplications were also present in cases with newly identified potential pathogenic point variants. These findings suggest the possible interaction of point variants in ZRS and preZRS through a common pathogenic mechanism, leading jointly to PPD. The findings expand the variant spectrum associated with non-syndromic polydactyly and highlight that, despite different classifications, anterior polydactyly caused by variants in ZRS and nearby regions may share common pathogenic mechanisms. The incorporation of various variant types in genetic screening can effectively enhance the rate of pathogenic variant detection and contribute to the cost-effectiveness of genetic testing for limb developmental defects, thereby promoting healthy births.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":\" \",\"pages\":\"1433-1444\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-024-02709-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02709-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genetic analysis of preaxial polydactyly: identification of novel variants and the role of ZRS duplications in a Chinese cohort of 102 cases.
Preaxial polydactyly (PPD) is a congenital limb malformation, previously reported to be caused primarily by variants in the ZRS and upstream preZRS regions. This study investigated genetic variations associated with PPD, focusing on point variants and copy number variations (CNVs) in the ZRS and preZRS regions. Comprehensive genetic analyses were conducted on 102 patients with PPD, including detailed clinical examinations and Sanger sequencing of the ZRS and preZRS regions. Additionally, real-time quantitative PCR (qPCR) was used to detect CNVs in the ZRS region. The evolutionary conservation and population frequencies of identified variants were also evaluated. Six point variants were identified, among which four are likely pathogenic novel variants: 93G > T (g.156584477G > T), 106G > A (g.156584464G > A), 278G > A (g.156584292G > A), and 409A > C (g.156585378A > C). Additionally, qPCR analysis revealed that 66.67% of patients exhibited ZRS duplications. Notably, these duplications were also present in cases with newly identified potential pathogenic point variants. These findings suggest the possible interaction of point variants in ZRS and preZRS through a common pathogenic mechanism, leading jointly to PPD. The findings expand the variant spectrum associated with non-syndromic polydactyly and highlight that, despite different classifications, anterior polydactyly caused by variants in ZRS and nearby regions may share common pathogenic mechanisms. The incorporation of various variant types in genetic screening can effectively enhance the rate of pathogenic variant detection and contribute to the cost-effectiveness of genetic testing for limb developmental defects, thereby promoting healthy births.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.