Lydia Rachbauer, Cesar B Granda, Shilva Shrestha, Werner Fuchs, Wolfgang Gabauer, Steven W Singer, Blake A Simmons, Meltem Urgun-Demirtas
{"title":"从城市和工业废物及废水中回收能源和养分--展望。","authors":"Lydia Rachbauer, Cesar B Granda, Shilva Shrestha, Werner Fuchs, Wolfgang Gabauer, Steven W Singer, Blake A Simmons, Meltem Urgun-Demirtas","doi":"10.1093/jimb/kuae040","DOIUrl":null,"url":null,"abstract":"<p><p>This publication highlights the latest advancements in the field of energy and nutrient recovery from organics rich municipal and industrial waste and wastewater. Energy and carbon rich waste streams are multifaceted, including municipal solid waste, industrial waste, agricultural by-products and residues, beached or residual seaweed biomass from post-harvest processing, and food waste, and are valuable resources to overcome current limitations with sustainable feedstock supply chains for biorefining approaches. The emphasis will be on the most recent scientific progress in the area, including the development of new and innovative technologies, such as microbial processes and the role of biofilms for the degradation of organic pollutants in wastewater, as well as the production of biofuels and value-added products from organic waste and wastewater streams. The carboxylate platform, which employs microbiomes to produce mixed carboxylic acids through methane-arrested anaerobic digestion, is the focus as a new conversion technology. Nutrient recycling from conventional waste streams such as wastewater and digestate, and the energetic valorization of such streams will also be discussed. The selected technologies significantly contribute to advanced waste and wastewater treatment and support the recovery and utilization of carboxylic acids as the basis to produce many useful and valuable products, including food and feed preservatives, human and animal health supplements, solvents, plasticizers, lubricants, and even biofuels such as sustainable aviation fuel.</p><p><strong>One-sentence summary: </strong>Multifaceted waste streams as the basis for resource recovery are essential to achieve environmental sustainability in a circular economy, and require the development of next-generation waste treatment technologies leveraging a highly adaptive mixed microbial community approach to produce new biochemicals, biomaterials, and biofuels from carbon-rich organic waste streams.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586630/pdf/","citationCount":"0","resultStr":"{\"title\":\"Energy and nutrient recovery from municipal and industrial waste and wastewater-a perspective.\",\"authors\":\"Lydia Rachbauer, Cesar B Granda, Shilva Shrestha, Werner Fuchs, Wolfgang Gabauer, Steven W Singer, Blake A Simmons, Meltem Urgun-Demirtas\",\"doi\":\"10.1093/jimb/kuae040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This publication highlights the latest advancements in the field of energy and nutrient recovery from organics rich municipal and industrial waste and wastewater. Energy and carbon rich waste streams are multifaceted, including municipal solid waste, industrial waste, agricultural by-products and residues, beached or residual seaweed biomass from post-harvest processing, and food waste, and are valuable resources to overcome current limitations with sustainable feedstock supply chains for biorefining approaches. The emphasis will be on the most recent scientific progress in the area, including the development of new and innovative technologies, such as microbial processes and the role of biofilms for the degradation of organic pollutants in wastewater, as well as the production of biofuels and value-added products from organic waste and wastewater streams. The carboxylate platform, which employs microbiomes to produce mixed carboxylic acids through methane-arrested anaerobic digestion, is the focus as a new conversion technology. Nutrient recycling from conventional waste streams such as wastewater and digestate, and the energetic valorization of such streams will also be discussed. The selected technologies significantly contribute to advanced waste and wastewater treatment and support the recovery and utilization of carboxylic acids as the basis to produce many useful and valuable products, including food and feed preservatives, human and animal health supplements, solvents, plasticizers, lubricants, and even biofuels such as sustainable aviation fuel.</p><p><strong>One-sentence summary: </strong>Multifaceted waste streams as the basis for resource recovery are essential to achieve environmental sustainability in a circular economy, and require the development of next-generation waste treatment technologies leveraging a highly adaptive mixed microbial community approach to produce new biochemicals, biomaterials, and biofuels from carbon-rich organic waste streams.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuae040\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuae040","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Energy and nutrient recovery from municipal and industrial waste and wastewater-a perspective.
This publication highlights the latest advancements in the field of energy and nutrient recovery from organics rich municipal and industrial waste and wastewater. Energy and carbon rich waste streams are multifaceted, including municipal solid waste, industrial waste, agricultural by-products and residues, beached or residual seaweed biomass from post-harvest processing, and food waste, and are valuable resources to overcome current limitations with sustainable feedstock supply chains for biorefining approaches. The emphasis will be on the most recent scientific progress in the area, including the development of new and innovative technologies, such as microbial processes and the role of biofilms for the degradation of organic pollutants in wastewater, as well as the production of biofuels and value-added products from organic waste and wastewater streams. The carboxylate platform, which employs microbiomes to produce mixed carboxylic acids through methane-arrested anaerobic digestion, is the focus as a new conversion technology. Nutrient recycling from conventional waste streams such as wastewater and digestate, and the energetic valorization of such streams will also be discussed. The selected technologies significantly contribute to advanced waste and wastewater treatment and support the recovery and utilization of carboxylic acids as the basis to produce many useful and valuable products, including food and feed preservatives, human and animal health supplements, solvents, plasticizers, lubricants, and even biofuels such as sustainable aviation fuel.
One-sentence summary: Multifaceted waste streams as the basis for resource recovery are essential to achieve environmental sustainability in a circular economy, and require the development of next-generation waste treatment technologies leveraging a highly adaptive mixed microbial community approach to produce new biochemicals, biomaterials, and biofuels from carbon-rich organic waste streams.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology