线粒体功能障碍--肝细胞癌的分子机制和潜在治疗方法。

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2024-10-27 DOI:10.1007/s11010-024-05144-4
Lianlin Zeng, Lutao Zhu, Shasha Fu, Yangan Li, Kehui Hu
{"title":"线粒体功能障碍--肝细胞癌的分子机制和潜在治疗方法。","authors":"Lianlin Zeng, Lutao Zhu, Shasha Fu, Yangan Li, Kehui Hu","doi":"10.1007/s11010-024-05144-4","DOIUrl":null,"url":null,"abstract":"<p><p>Primary liver cancer (PLC), also known as hepatocellular carcinoma (HCC), is a common type of malignant tumor of the digestive system. Its pathological form has a significant negative impact on the patients' quality of life and ability to work, as well as a significant financial burden on society. Current researches had identified chronic hepatitis B virus infection, aflatoxin B1 exposure, and metabolic dysfunction-associated steatotic liver disease (MASLD) as the main causative factors of HCC. Numerous variables, including inflammatory ones, oxidative stress, apoptosis, autophagy, and others, have been linked to the pathophysiology of HCC. On the other hand, autoimmune regulation, inflammatory response, senescence of the hepatocytes, and mitochondrial dysfunction are all closely related to the pathogenesis of HCC. In fact, a growing number of studies have suggested that mitochondrial dysfunction in hepatocytes may be a key factor in the pathogenesis of HCC. In disorders linked to cancer, mitochondrial dysfunction has gained attention in recent 10 years. As the primary producer of adenosine triphosphate (ATP) in liver cells, mitochondria are essential for preserving cell viability and physiological processes. By influencing multiple pathological processes, including mitochondrial fission/fusion, mitophagy, cellular senescence, and cell death, mitochondrial dysfunction contributes to the development of HCC. We review the molecular mechanisms of HCC-associated mitochondrial dysfunction and discuss new directions for quality control of mitochondrial disorders as a treatment for HCC.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial Dysfunction-Molecular Mechanisms and Potential Treatment approaches of Hepatocellular Carcinoma.\",\"authors\":\"Lianlin Zeng, Lutao Zhu, Shasha Fu, Yangan Li, Kehui Hu\",\"doi\":\"10.1007/s11010-024-05144-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Primary liver cancer (PLC), also known as hepatocellular carcinoma (HCC), is a common type of malignant tumor of the digestive system. Its pathological form has a significant negative impact on the patients' quality of life and ability to work, as well as a significant financial burden on society. Current researches had identified chronic hepatitis B virus infection, aflatoxin B1 exposure, and metabolic dysfunction-associated steatotic liver disease (MASLD) as the main causative factors of HCC. Numerous variables, including inflammatory ones, oxidative stress, apoptosis, autophagy, and others, have been linked to the pathophysiology of HCC. On the other hand, autoimmune regulation, inflammatory response, senescence of the hepatocytes, and mitochondrial dysfunction are all closely related to the pathogenesis of HCC. In fact, a growing number of studies have suggested that mitochondrial dysfunction in hepatocytes may be a key factor in the pathogenesis of HCC. In disorders linked to cancer, mitochondrial dysfunction has gained attention in recent 10 years. As the primary producer of adenosine triphosphate (ATP) in liver cells, mitochondria are essential for preserving cell viability and physiological processes. By influencing multiple pathological processes, including mitochondrial fission/fusion, mitophagy, cellular senescence, and cell death, mitochondrial dysfunction contributes to the development of HCC. We review the molecular mechanisms of HCC-associated mitochondrial dysfunction and discuss new directions for quality control of mitochondrial disorders as a treatment for HCC.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-05144-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05144-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

原发性肝癌(PLC)又称肝细胞癌(HCC),是一种常见的消化系统恶性肿瘤。其病理形态对患者的生活质量和工作能力有很大的负面影响,同时也给社会带来巨大的经济负担。目前的研究发现,慢性乙型肝炎病毒感染、黄曲霉毒素 B1 暴露和代谢功能障碍相关性脂肪性肝病(MASLD)是 HCC 的主要致病因素。炎症、氧化应激、细胞凋亡、自噬等许多变量都与 HCC 的病理生理学有关。另一方面,自身免疫调节、炎症反应、肝细胞衰老和线粒体功能障碍都与 HCC 的发病机制密切相关。事实上,越来越多的研究表明,肝细胞线粒体功能障碍可能是导致 HCC 发病的关键因素。在与癌症相关的疾病中,线粒体功能障碍近十年来备受关注。线粒体是肝细胞中三磷酸腺苷(ATP)的主要制造者,对维持细胞活力和生理过程至关重要。线粒体功能障碍会影响多种病理过程,包括线粒体裂变/融合、有丝分裂、细胞衰老和细胞死亡,从而导致 HCC 的发生。我们回顾了与 HCC 相关的线粒体功能障碍的分子机制,并讨论了线粒体功能紊乱的质量控制作为 HCC 治疗方法的新方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitochondrial Dysfunction-Molecular Mechanisms and Potential Treatment approaches of Hepatocellular Carcinoma.

Primary liver cancer (PLC), also known as hepatocellular carcinoma (HCC), is a common type of malignant tumor of the digestive system. Its pathological form has a significant negative impact on the patients' quality of life and ability to work, as well as a significant financial burden on society. Current researches had identified chronic hepatitis B virus infection, aflatoxin B1 exposure, and metabolic dysfunction-associated steatotic liver disease (MASLD) as the main causative factors of HCC. Numerous variables, including inflammatory ones, oxidative stress, apoptosis, autophagy, and others, have been linked to the pathophysiology of HCC. On the other hand, autoimmune regulation, inflammatory response, senescence of the hepatocytes, and mitochondrial dysfunction are all closely related to the pathogenesis of HCC. In fact, a growing number of studies have suggested that mitochondrial dysfunction in hepatocytes may be a key factor in the pathogenesis of HCC. In disorders linked to cancer, mitochondrial dysfunction has gained attention in recent 10 years. As the primary producer of adenosine triphosphate (ATP) in liver cells, mitochondria are essential for preserving cell viability and physiological processes. By influencing multiple pathological processes, including mitochondrial fission/fusion, mitophagy, cellular senescence, and cell death, mitochondrial dysfunction contributes to the development of HCC. We review the molecular mechanisms of HCC-associated mitochondrial dysfunction and discuss new directions for quality control of mitochondrial disorders as a treatment for HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
Retraction Note: MiR-146a negatively regulates neutrophil elastase-induced MUC5AC secretion from 16HBE human bronchial epithelial cells. Retraction Note: Topical application of aminopeptidase N-neutralizing antibody accelerates wound closure. Correction to: Mitochondrial complex-1 as a therapeutic target for cardiac diseases. RETRACTED ARTICLE: Upregulation of MCL-1 by LUCAT1 through interacting with SRSF1 promotes the migration and invasion in non-small cell lung carcinoma. Functional activity and morphology of isolated rat cardiac mitochondria under calcium overload. Effect of naringin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1