{"title":"病媒细菌植物病原体鞭毛蛋白、冷休克蛋白和伸长因子 Tu 的感知与进化。","authors":"Jessica Trinh, Megann Tran, Gitta Coaker","doi":"10.1111/mpp.70019","DOIUrl":null,"url":null,"abstract":"<p><p>Vector-borne bacterial pathogens cause devastating plant diseases that cost billions of dollars in crop losses worldwide. These pathogens have evolved to be host- and vector-dependent, resulting in a reduced genome size compared to their free-living relatives. All known vector-borne bacterial plant pathogens belong to four different genera: 'Candidatus Liberibacter', 'Candidatus Phytoplasma', Spiroplasma and Xylella. To protect themselves against pathogens, plants have evolved pattern recognition receptors that can detect conserved pathogen features as non-self and mount an immune response. To gain an understanding of how vector-borne pathogen features are perceived in plants, we investigated three proteinaceous features derived from cold shock protein (csp22), flagellin (flg22) and elongation factor Tu (elf18) from vector-borne bacterial pathogens as well as their closest free-living relatives. In general, vector-borne pathogens have fewer copies of genes encoding flagellin and cold shock protein compared to their closest free-living relatives. Furthermore, epitopes from vector-borne pathogens were less likely to be immunogenic compared to their free-living counterparts. Most Liberibacter csp22 and elf18 epitopes do not trigger plant immune responses in tomato or Arabidopsis. Interestingly, csp22 from the citrus pathogen 'Candidatus Liberibacter asiaticus' triggers immune responses in solanaceous plants, while csp22 from the solanaceous pathogen 'Candidatus Liberibacter solanacearum' does not. Our findings suggest that vector-borne plant pathogenic bacteria evolved to evade host recognition.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 10","pages":"e70019"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512079/pdf/","citationCount":"0","resultStr":"{\"title\":\"The perception and evolution of flagellin, cold shock protein and elongation factor Tu from vector-borne bacterial plant pathogens.\",\"authors\":\"Jessica Trinh, Megann Tran, Gitta Coaker\",\"doi\":\"10.1111/mpp.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vector-borne bacterial pathogens cause devastating plant diseases that cost billions of dollars in crop losses worldwide. These pathogens have evolved to be host- and vector-dependent, resulting in a reduced genome size compared to their free-living relatives. All known vector-borne bacterial plant pathogens belong to four different genera: 'Candidatus Liberibacter', 'Candidatus Phytoplasma', Spiroplasma and Xylella. To protect themselves against pathogens, plants have evolved pattern recognition receptors that can detect conserved pathogen features as non-self and mount an immune response. To gain an understanding of how vector-borne pathogen features are perceived in plants, we investigated three proteinaceous features derived from cold shock protein (csp22), flagellin (flg22) and elongation factor Tu (elf18) from vector-borne bacterial pathogens as well as their closest free-living relatives. In general, vector-borne pathogens have fewer copies of genes encoding flagellin and cold shock protein compared to their closest free-living relatives. Furthermore, epitopes from vector-borne pathogens were less likely to be immunogenic compared to their free-living counterparts. Most Liberibacter csp22 and elf18 epitopes do not trigger plant immune responses in tomato or Arabidopsis. Interestingly, csp22 from the citrus pathogen 'Candidatus Liberibacter asiaticus' triggers immune responses in solanaceous plants, while csp22 from the solanaceous pathogen 'Candidatus Liberibacter solanacearum' does not. Our findings suggest that vector-borne plant pathogenic bacteria evolved to evade host recognition.</p>\",\"PeriodicalId\":18763,\"journal\":{\"name\":\"Molecular plant pathology\",\"volume\":\"25 10\",\"pages\":\"e70019\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512079/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular plant pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/mpp.70019\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70019","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The perception and evolution of flagellin, cold shock protein and elongation factor Tu from vector-borne bacterial plant pathogens.
Vector-borne bacterial pathogens cause devastating plant diseases that cost billions of dollars in crop losses worldwide. These pathogens have evolved to be host- and vector-dependent, resulting in a reduced genome size compared to their free-living relatives. All known vector-borne bacterial plant pathogens belong to four different genera: 'Candidatus Liberibacter', 'Candidatus Phytoplasma', Spiroplasma and Xylella. To protect themselves against pathogens, plants have evolved pattern recognition receptors that can detect conserved pathogen features as non-self and mount an immune response. To gain an understanding of how vector-borne pathogen features are perceived in plants, we investigated three proteinaceous features derived from cold shock protein (csp22), flagellin (flg22) and elongation factor Tu (elf18) from vector-borne bacterial pathogens as well as their closest free-living relatives. In general, vector-borne pathogens have fewer copies of genes encoding flagellin and cold shock protein compared to their closest free-living relatives. Furthermore, epitopes from vector-borne pathogens were less likely to be immunogenic compared to their free-living counterparts. Most Liberibacter csp22 and elf18 epitopes do not trigger plant immune responses in tomato or Arabidopsis. Interestingly, csp22 from the citrus pathogen 'Candidatus Liberibacter asiaticus' triggers immune responses in solanaceous plants, while csp22 from the solanaceous pathogen 'Candidatus Liberibacter solanacearum' does not. Our findings suggest that vector-borne plant pathogenic bacteria evolved to evade host recognition.
期刊介绍:
Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.