表面增强拉曼散射 (SERS) 基质的介绍和发展:综述。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-10-14 DOI:10.3390/nano14201648
Jianping Peng, Yutao Song, Yue Lin, Zhenkai Huang
{"title":"表面增强拉曼散射 (SERS) 基质的介绍和发展:综述。","authors":"Jianping Peng, Yutao Song, Yue Lin, Zhenkai Huang","doi":"10.3390/nano14201648","DOIUrl":null,"url":null,"abstract":"<p><p>Since its discovery, the phenomenon of Surface Enhanced Raman Scattering (SERS) has gradually become an important tool for analyzing the composition and structure of substances. As a trace technique that can efficiently and nondestructively detect single molecules, the application of SERS has expanded from environmental and materials science to biomedical fields. In the past decade or so, the explosive development of nanotechnology and nanomaterials has further boosted the research of SERS technology, as nanomaterial-based SERS substrates have shown good signal enhancement properties. So far, it is widely recognized that the morphology, size, composition, and stacking mode of nanomaterials have a very great influence on the strength of the substrate SERS effect. Herein, an overview of methods for the preparation of surface-enhanced Raman scattering (SERS) substrates is provided. Specifically, this review describes a variety of common SERS substrate preparation methods and explores the potential and promise of these methods for applications in chemical analysis and biomedical fields. By detailing the influence of different nanomaterials (e.g., metallic nanoparticles, nanowires, and nanostars) and their structural features on the SERS effect, this article aims to provide a comprehensive understanding of SERS substrate preparation techniques.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510290/pdf/","citationCount":"0","resultStr":"{\"title\":\"Introduction and Development of Surface-Enhanced Raman Scattering (SERS) Substrates: A Review.\",\"authors\":\"Jianping Peng, Yutao Song, Yue Lin, Zhenkai Huang\",\"doi\":\"10.3390/nano14201648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since its discovery, the phenomenon of Surface Enhanced Raman Scattering (SERS) has gradually become an important tool for analyzing the composition and structure of substances. As a trace technique that can efficiently and nondestructively detect single molecules, the application of SERS has expanded from environmental and materials science to biomedical fields. In the past decade or so, the explosive development of nanotechnology and nanomaterials has further boosted the research of SERS technology, as nanomaterial-based SERS substrates have shown good signal enhancement properties. So far, it is widely recognized that the morphology, size, composition, and stacking mode of nanomaterials have a very great influence on the strength of the substrate SERS effect. Herein, an overview of methods for the preparation of surface-enhanced Raman scattering (SERS) substrates is provided. Specifically, this review describes a variety of common SERS substrate preparation methods and explores the potential and promise of these methods for applications in chemical analysis and biomedical fields. By detailing the influence of different nanomaterials (e.g., metallic nanoparticles, nanowires, and nanostars) and their structural features on the SERS effect, this article aims to provide a comprehensive understanding of SERS substrate preparation techniques.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510290/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14201648\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201648","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自发现以来,表面增强拉曼散射(SERS)现象已逐渐成为分析物质成分和结构的重要工具。作为一种可以高效、无损地检测单分子的痕量技术,SERS 的应用范围已经从环境科学和材料科学扩展到生物医学领域。近十多年来,纳米技术和纳米材料的爆炸式发展进一步推动了 SERS 技术的研究,基于纳米材料的 SERS 基底显示出良好的信号增强特性。迄今为止,人们普遍认为纳米材料的形态、尺寸、组成和堆积模式对基底 SERS 效应的强弱有很大影响。本文概述了表面增强拉曼散射(SERS)基底的制备方法。具体来说,本综述介绍了各种常见的 SERS 基底制备方法,并探讨了这些方法在化学分析和生物医学领域的应用潜力和前景。通过详细介绍不同纳米材料(如金属纳米颗粒、纳米线和纳米棒)及其结构特征对 SERS 效果的影响,本文旨在提供对 SERS 基底制备技术的全面理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introduction and Development of Surface-Enhanced Raman Scattering (SERS) Substrates: A Review.

Since its discovery, the phenomenon of Surface Enhanced Raman Scattering (SERS) has gradually become an important tool for analyzing the composition and structure of substances. As a trace technique that can efficiently and nondestructively detect single molecules, the application of SERS has expanded from environmental and materials science to biomedical fields. In the past decade or so, the explosive development of nanotechnology and nanomaterials has further boosted the research of SERS technology, as nanomaterial-based SERS substrates have shown good signal enhancement properties. So far, it is widely recognized that the morphology, size, composition, and stacking mode of nanomaterials have a very great influence on the strength of the substrate SERS effect. Herein, an overview of methods for the preparation of surface-enhanced Raman scattering (SERS) substrates is provided. Specifically, this review describes a variety of common SERS substrate preparation methods and explores the potential and promise of these methods for applications in chemical analysis and biomedical fields. By detailing the influence of different nanomaterials (e.g., metallic nanoparticles, nanowires, and nanostars) and their structural features on the SERS effect, this article aims to provide a comprehensive understanding of SERS substrate preparation techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Enhancing Charge Trapping Performance of Hafnia Thin Films Using Sequential Plasma Atomic Layer Deposition. Flexible All-Carbon Nanoarchitecture Built from In Situ Formation of Nanoporous Graphene Within "Skeletal-Capillary" Carbon Nanotube Networks for Supercapacitors. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. Phonon Drag Contribution to Thermopower for a Heated Metal Nanoisland on a Semiconductor Substrate. On the Synthesis of Graphene Oxide/Titanium Dioxide (GO/TiO2) Nanorods and Their Application as Saturable Absorbers for Passive Q-Switched Fiber Lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1