利用 NH3 的吸附和解吸可逆地调节铁电 SnS 的电特性。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-10-12 DOI:10.3390/nano14201638
Wanqian Wang, Wei Luo, Sen Zhang, Chayuan Zeng, Fei Xie, Chuyun Deng, Guang Wang, Gang Peng
{"title":"利用 NH3 的吸附和解吸可逆地调节铁电 SnS 的电特性。","authors":"Wanqian Wang, Wei Luo, Sen Zhang, Chayuan Zeng, Fei Xie, Chuyun Deng, Guang Wang, Gang Peng","doi":"10.3390/nano14201638","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) ferroelectrics usually exhibit instability or a tendency toward degradation when exposed to the ambient atmosphere, and the mechanism behind this phenomenon remains unclear. To unravel this affection mechanism, we have undertaken an investigation utilizing NH<sub>3</sub> and two-dimensional ferroelectric SnS. Herein, the adsorption and desorption of NH<sub>3</sub> molecules can reversibly modulate the electrical properties of SnS, encompassing I-V curves and transfer curves. The response time for NH<sub>3</sub> adsorption is approximately 1.12 s, which is much quicker than that observed in other two-dimensional materials. KPFM characterizations indicate that air molecules' adsorption alters the surface potentials of SiO<sub>2</sub>, SnS, metal electrodes, and contacts with minimal impact on the electrode contact surface potential. Upon the adsorption of NH<sub>3</sub> molecules or air molecules, the hole concentration within the device decreases. These findings elucidate the adsorption mechanism of NH<sub>3</sub> molecules on SnS, potentially fostering the advancement of rapid gas sensing applications utilizing two-dimensional ferroelectrics.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510606/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reversible Tuning Electrical Properties in Ferroelectric SnS with NH<sub>3</sub> Adsorption and Desorption.\",\"authors\":\"Wanqian Wang, Wei Luo, Sen Zhang, Chayuan Zeng, Fei Xie, Chuyun Deng, Guang Wang, Gang Peng\",\"doi\":\"10.3390/nano14201638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) ferroelectrics usually exhibit instability or a tendency toward degradation when exposed to the ambient atmosphere, and the mechanism behind this phenomenon remains unclear. To unravel this affection mechanism, we have undertaken an investigation utilizing NH<sub>3</sub> and two-dimensional ferroelectric SnS. Herein, the adsorption and desorption of NH<sub>3</sub> molecules can reversibly modulate the electrical properties of SnS, encompassing I-V curves and transfer curves. The response time for NH<sub>3</sub> adsorption is approximately 1.12 s, which is much quicker than that observed in other two-dimensional materials. KPFM characterizations indicate that air molecules' adsorption alters the surface potentials of SiO<sub>2</sub>, SnS, metal electrodes, and contacts with minimal impact on the electrode contact surface potential. Upon the adsorption of NH<sub>3</sub> molecules or air molecules, the hole concentration within the device decreases. These findings elucidate the adsorption mechanism of NH<sub>3</sub> molecules on SnS, potentially fostering the advancement of rapid gas sensing applications utilizing two-dimensional ferroelectrics.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510606/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14201638\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201638","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)铁电在暴露于环境气氛时通常会表现出不稳定性或降解倾向,而这种现象背后的机理尚不清楚。为了揭示这种感情机制,我们利用 NH3 和二维铁电体 SnS 进行了研究。在这里,NH3 分子的吸附和解吸可以可逆地调节 SnS 的电学特性,包括 I-V 曲线和转移曲线。吸附 NH3 的响应时间约为 1.12 秒,比在其他二维材料中观察到的时间快得多。KPFM 表征表明,空气分子的吸附改变了 SiO2、SnS、金属电极和触点的表面电位,但对电极接触表面电位的影响很小。吸附 NH3 分子或空气分子后,器件内的空穴浓度会降低。这些发现阐明了 NH3 分子在 SnS 上的吸附机理,有可能促进利用二维铁电体的快速气体传感应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reversible Tuning Electrical Properties in Ferroelectric SnS with NH3 Adsorption and Desorption.

Two-dimensional (2D) ferroelectrics usually exhibit instability or a tendency toward degradation when exposed to the ambient atmosphere, and the mechanism behind this phenomenon remains unclear. To unravel this affection mechanism, we have undertaken an investigation utilizing NH3 and two-dimensional ferroelectric SnS. Herein, the adsorption and desorption of NH3 molecules can reversibly modulate the electrical properties of SnS, encompassing I-V curves and transfer curves. The response time for NH3 adsorption is approximately 1.12 s, which is much quicker than that observed in other two-dimensional materials. KPFM characterizations indicate that air molecules' adsorption alters the surface potentials of SiO2, SnS, metal electrodes, and contacts with minimal impact on the electrode contact surface potential. Upon the adsorption of NH3 molecules or air molecules, the hole concentration within the device decreases. These findings elucidate the adsorption mechanism of NH3 molecules on SnS, potentially fostering the advancement of rapid gas sensing applications utilizing two-dimensional ferroelectrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Enhancing Charge Trapping Performance of Hafnia Thin Films Using Sequential Plasma Atomic Layer Deposition. Flexible All-Carbon Nanoarchitecture Built from In Situ Formation of Nanoporous Graphene Within "Skeletal-Capillary" Carbon Nanotube Networks for Supercapacitors. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. Phonon Drag Contribution to Thermopower for a Heated Metal Nanoisland on a Semiconductor Substrate. On the Synthesis of Graphene Oxide/Titanium Dioxide (GO/TiO2) Nanorods and Their Application as Saturable Absorbers for Passive Q-Switched Fiber Lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1