Kouhei Ishikawa, Atsushi Murao, Monowar Aziz, Ping Wang
{"title":"乳脂球-表皮生长因子-VIII衍生的寡肽3(MOP3)能减轻肝缺血再灌注损伤的炎症反应并提高存活率。","authors":"Kouhei Ishikawa, Atsushi Murao, Monowar Aziz, Ping Wang","doi":"10.1016/j.surg.2024.09.029","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hepatic ischemia/reperfusion injury is a severe clinical condition leading to high mortality as the result of excessive inflammation, partially triggered by released damage-associated molecular patterns. Extracellular cold-inducible RNA-binding protein is a new damage-associated molecular pattern. Current clinical management of hepatic ischemia/reperfusion injury is limited to supportive therapy, necessitating the development of novel and effective treatment strategies. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 is a newly invented oligopeptide originating from milk fat globule-epidermal growth factor-VIII. This peptide acts as an opsonic compound that specifically binds to extracellular cold-inducible RNA-binding protein to facilitate its clearance by phagocytes, thereby attenuating inflammation. In this study, we hypothesized that milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 attenuated hepatic ischemia/reperfusion injury by inhibiting extracellular cold-inducible RNA-binding protein-induced inflammation in Kupffer cells.</p><p><strong>Methods: </strong>We treated Kupffer cells isolated from male C57BL/6 mice with extracellular cold-inducible RNA-binding protein and various doses of milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 for 4 hours, then measured cytokines in the culture supernatants. In addition, mice underwent 70% hepatic ischemia for 60 minutes immediately followed by the intravenous administration of either vehicle or milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3. Blood and ischemic liver tissues were collected 24 hours later, and inflammatory markers including cytokines, liver enzymes, chemokines, myeloperoxidase activity, and Z-DNA-binding protein 1 were measured. Hepatic tissue damage and cell death were evaluated histologically. Survival rates were monitored for 10 days posthepatic ischemia/reperfusion.</p><p><strong>Results: </strong>The release of interleukin-6 and tumor necrosis factor-α from extracellular cold-inducible RNA-binding protein-challenged Kupffer cells was significantly reduced by milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 in a dose-dependent manner. In hepatic ischemia/reperfusion mice, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly decreased serum levels of extracellular cold-inducible RNA-binding protein, interleukin-6, tumor necrosis factor-α, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment also significantly reduced mRNA levels of interleukin-6, tumor necrosis factor-α, interleukin-1β, Z-DNA-binding protein 1, and chemokine macrophage inflammatory protein-2, as well as myeloperoxidase activity in hepatic tissues. Histologic evaluation demonstrated that treatment with milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated tissue damage and cell death in the liver of hepatic ischemia/reperfusion mice. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly improved the survival rate of hepatic ischemia/reperfusion mice.</p><p><strong>Conclusion: </strong>Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated inflammation and liver tissue damage and improved survival after hepatic ischemia/reperfusion. Thus, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 holds promise as a potential future therapeutic strategy for hepatic ischemia/reperfusion injury.</p>","PeriodicalId":22152,"journal":{"name":"Surgery","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 (MOP3) attenuates inflammation and improves survival in hepatic ischemia/reperfusion injury.\",\"authors\":\"Kouhei Ishikawa, Atsushi Murao, Monowar Aziz, Ping Wang\",\"doi\":\"10.1016/j.surg.2024.09.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Hepatic ischemia/reperfusion injury is a severe clinical condition leading to high mortality as the result of excessive inflammation, partially triggered by released damage-associated molecular patterns. Extracellular cold-inducible RNA-binding protein is a new damage-associated molecular pattern. Current clinical management of hepatic ischemia/reperfusion injury is limited to supportive therapy, necessitating the development of novel and effective treatment strategies. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 is a newly invented oligopeptide originating from milk fat globule-epidermal growth factor-VIII. This peptide acts as an opsonic compound that specifically binds to extracellular cold-inducible RNA-binding protein to facilitate its clearance by phagocytes, thereby attenuating inflammation. In this study, we hypothesized that milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 attenuated hepatic ischemia/reperfusion injury by inhibiting extracellular cold-inducible RNA-binding protein-induced inflammation in Kupffer cells.</p><p><strong>Methods: </strong>We treated Kupffer cells isolated from male C57BL/6 mice with extracellular cold-inducible RNA-binding protein and various doses of milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 for 4 hours, then measured cytokines in the culture supernatants. In addition, mice underwent 70% hepatic ischemia for 60 minutes immediately followed by the intravenous administration of either vehicle or milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3. Blood and ischemic liver tissues were collected 24 hours later, and inflammatory markers including cytokines, liver enzymes, chemokines, myeloperoxidase activity, and Z-DNA-binding protein 1 were measured. Hepatic tissue damage and cell death were evaluated histologically. Survival rates were monitored for 10 days posthepatic ischemia/reperfusion.</p><p><strong>Results: </strong>The release of interleukin-6 and tumor necrosis factor-α from extracellular cold-inducible RNA-binding protein-challenged Kupffer cells was significantly reduced by milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 in a dose-dependent manner. In hepatic ischemia/reperfusion mice, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly decreased serum levels of extracellular cold-inducible RNA-binding protein, interleukin-6, tumor necrosis factor-α, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment also significantly reduced mRNA levels of interleukin-6, tumor necrosis factor-α, interleukin-1β, Z-DNA-binding protein 1, and chemokine macrophage inflammatory protein-2, as well as myeloperoxidase activity in hepatic tissues. Histologic evaluation demonstrated that treatment with milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated tissue damage and cell death in the liver of hepatic ischemia/reperfusion mice. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly improved the survival rate of hepatic ischemia/reperfusion mice.</p><p><strong>Conclusion: </strong>Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated inflammation and liver tissue damage and improved survival after hepatic ischemia/reperfusion. Thus, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 holds promise as a potential future therapeutic strategy for hepatic ischemia/reperfusion injury.</p>\",\"PeriodicalId\":22152,\"journal\":{\"name\":\"Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.surg.2024.09.029\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.surg.2024.09.029","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 (MOP3) attenuates inflammation and improves survival in hepatic ischemia/reperfusion injury.
Introduction: Hepatic ischemia/reperfusion injury is a severe clinical condition leading to high mortality as the result of excessive inflammation, partially triggered by released damage-associated molecular patterns. Extracellular cold-inducible RNA-binding protein is a new damage-associated molecular pattern. Current clinical management of hepatic ischemia/reperfusion injury is limited to supportive therapy, necessitating the development of novel and effective treatment strategies. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 is a newly invented oligopeptide originating from milk fat globule-epidermal growth factor-VIII. This peptide acts as an opsonic compound that specifically binds to extracellular cold-inducible RNA-binding protein to facilitate its clearance by phagocytes, thereby attenuating inflammation. In this study, we hypothesized that milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 attenuated hepatic ischemia/reperfusion injury by inhibiting extracellular cold-inducible RNA-binding protein-induced inflammation in Kupffer cells.
Methods: We treated Kupffer cells isolated from male C57BL/6 mice with extracellular cold-inducible RNA-binding protein and various doses of milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 for 4 hours, then measured cytokines in the culture supernatants. In addition, mice underwent 70% hepatic ischemia for 60 minutes immediately followed by the intravenous administration of either vehicle or milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3. Blood and ischemic liver tissues were collected 24 hours later, and inflammatory markers including cytokines, liver enzymes, chemokines, myeloperoxidase activity, and Z-DNA-binding protein 1 were measured. Hepatic tissue damage and cell death were evaluated histologically. Survival rates were monitored for 10 days posthepatic ischemia/reperfusion.
Results: The release of interleukin-6 and tumor necrosis factor-α from extracellular cold-inducible RNA-binding protein-challenged Kupffer cells was significantly reduced by milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 in a dose-dependent manner. In hepatic ischemia/reperfusion mice, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly decreased serum levels of extracellular cold-inducible RNA-binding protein, interleukin-6, tumor necrosis factor-α, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment also significantly reduced mRNA levels of interleukin-6, tumor necrosis factor-α, interleukin-1β, Z-DNA-binding protein 1, and chemokine macrophage inflammatory protein-2, as well as myeloperoxidase activity in hepatic tissues. Histologic evaluation demonstrated that treatment with milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated tissue damage and cell death in the liver of hepatic ischemia/reperfusion mice. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly improved the survival rate of hepatic ischemia/reperfusion mice.
Conclusion: Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated inflammation and liver tissue damage and improved survival after hepatic ischemia/reperfusion. Thus, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 holds promise as a potential future therapeutic strategy for hepatic ischemia/reperfusion injury.
期刊介绍:
For 66 years, Surgery has published practical, authoritative information about procedures, clinical advances, and major trends shaping general surgery. Each issue features original scientific contributions and clinical reports. Peer-reviewed articles cover topics in oncology, trauma, gastrointestinal, vascular, and transplantation surgery. The journal also publishes papers from the meetings of its sponsoring societies, the Society of University Surgeons, the Central Surgical Association, and the American Association of Endocrine Surgeons.