{"title":"芬太尼毒理学概况综述--2024 年更新。","authors":"Jessica Williamson, Ali Kermanizadeh","doi":"10.3390/toxics12100690","DOIUrl":null,"url":null,"abstract":"<p><p>Fentanyl and its analogues are synthetic opioids of varying potencies that are unfortunately heavily abused. Over the last 15 years, fentanyl and its analogues have contributed to the increasing prominence of hospitalisation and numerous deaths due to drug overdose. In this comprehensive literature review, the mechanism of toxicity of the drug in humans is evaluated. A systematic approach was used whereby the relevant literature has been detailed where the toxicity of fentanyl and/or its analogues to different organs/systems were investigated. Furthermore, the review covers the post-mortem toxicological data and demographic information from past fatal cases where fentanyl was believed to be involved. Such insight into fentanyl toxicity is useful as an aid to better understand the toxic doses of the drug and the suspected mechanism of action and the unexpected complications associated with overdose incidences involving the drug. Finally, the review offers an overview of the traditional and emerging test systems used to investigate the adverse effects of fentanyl on human health.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510970/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Review of Toxicological Profile of Fentanyl-A 2024 Update.\",\"authors\":\"Jessica Williamson, Ali Kermanizadeh\",\"doi\":\"10.3390/toxics12100690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fentanyl and its analogues are synthetic opioids of varying potencies that are unfortunately heavily abused. Over the last 15 years, fentanyl and its analogues have contributed to the increasing prominence of hospitalisation and numerous deaths due to drug overdose. In this comprehensive literature review, the mechanism of toxicity of the drug in humans is evaluated. A systematic approach was used whereby the relevant literature has been detailed where the toxicity of fentanyl and/or its analogues to different organs/systems were investigated. Furthermore, the review covers the post-mortem toxicological data and demographic information from past fatal cases where fentanyl was believed to be involved. Such insight into fentanyl toxicity is useful as an aid to better understand the toxic doses of the drug and the suspected mechanism of action and the unexpected complications associated with overdose incidences involving the drug. Finally, the review offers an overview of the traditional and emerging test systems used to investigate the adverse effects of fentanyl on human health.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510970/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12100690\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100690","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A Review of Toxicological Profile of Fentanyl-A 2024 Update.
Fentanyl and its analogues are synthetic opioids of varying potencies that are unfortunately heavily abused. Over the last 15 years, fentanyl and its analogues have contributed to the increasing prominence of hospitalisation and numerous deaths due to drug overdose. In this comprehensive literature review, the mechanism of toxicity of the drug in humans is evaluated. A systematic approach was used whereby the relevant literature has been detailed where the toxicity of fentanyl and/or its analogues to different organs/systems were investigated. Furthermore, the review covers the post-mortem toxicological data and demographic information from past fatal cases where fentanyl was believed to be involved. Such insight into fentanyl toxicity is useful as an aid to better understand the toxic doses of the drug and the suspected mechanism of action and the unexpected complications associated with overdose incidences involving the drug. Finally, the review offers an overview of the traditional and emerging test systems used to investigate the adverse effects of fentanyl on human health.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.