Zhilei Mao, Yanling Chen, Haixin Li, Qun Lu, Kun Zhou
{"title":"TLR4是Me-PFOSA-AcOH导致心血管疾病的潜在靶点:2013-2018年国家健康与营养调查(NHANES)和分子对接的证据。","authors":"Zhilei Mao, Yanling Chen, Haixin Li, Qun Lu, Kun Zhou","doi":"10.3390/toxics12100693","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Concerns have been raised regarding the effects of perfluoroalkyl substance (PFAS) exposure on cardiovascular diseases (CVD), but clear evidence linking PFAS exposure to CVD is lacking, and the mechanism remains unclear.</p><p><strong>Objectives: </strong>To study the association between PFASs and CVD in U.S. population, and to reveal the mechanism of PFASs' effects on CVD.</p><p><strong>Methods: </strong>To assess the relationships between individual blood serum PFAS levels and the risk of total CVD or its subtypes, multivariable logistic regression analysis and partial least squares discriminant analysis (PLS-DA) were conducted on all participants or subgroups among 3391 adults from the National Health and Nutrition Examination Survey (NHANES). The SuperPred and GeneCards databases were utilized to identify potential targets related to PFAS and CVD, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersection genes were performed using Metascape. Protein interaction networks were generated, and core targets were identified with STRING. Molecular docking was achieved using Autodock Vina 1.1.2.</p><p><strong>Results: </strong>There was a positive association between Me-PFOSA-AcOH and CVD (OR = 1.28, <i>p</i> = 0.022), especially coronary heart disease (CHD) (OR = 1.47, <i>p</i> = 0.007) and heart attack (OR = 1.58, <i>p</i> < 0.001) after adjusting for all potential covariates. Me-PFOSA-AcOH contributed the most to distinguishing between individuals in terms of CVD and non-CVD. Significant moderating effects for Me-PFOSA-AcOH were observed in the subgroup analysis stratified by sex, ethnicity, education level, PIR, BMI, smoking status, physical activity, and hypertension (<i>p</i> < 0.05). The potential intersection targets were mainly enriched in CVD-related pathways, including the inflammatory response, neuroactive ligand-receptor interaction, MAPK signaling pathway, and arachidonic acid metabolism. TLR4 was identified as the core target for the effects of Me-PFOSA-AcOH on CVD. Molecular docking results revealed that the binding energy of Me-PFOSA-AcOH to the TLR4-MD-2 complex was -7.2 kcal/mol, suggesting that Me-PFOSA-AcOH binds well to the TLR4-MD-2 complex.</p><p><strong>Conclusions: </strong>Me-PFOSA-AcOH exposure was significantly associated with CVD. Network toxicology and molecular docking uncovered novel molecular targets, such as TLR4, and identified the inflammatory and metabolic mechanisms underlying Me-PFOSA-AcOH-induced CVD.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511422/pdf/","citationCount":"0","resultStr":"{\"title\":\"TLR4 as a Potential Target of Me-PFOSA-AcOH Leading to Cardiovascular Diseases: Evidence from NHANES 2013-2018 and Molecular Docking.\",\"authors\":\"Zhilei Mao, Yanling Chen, Haixin Li, Qun Lu, Kun Zhou\",\"doi\":\"10.3390/toxics12100693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Concerns have been raised regarding the effects of perfluoroalkyl substance (PFAS) exposure on cardiovascular diseases (CVD), but clear evidence linking PFAS exposure to CVD is lacking, and the mechanism remains unclear.</p><p><strong>Objectives: </strong>To study the association between PFASs and CVD in U.S. population, and to reveal the mechanism of PFASs' effects on CVD.</p><p><strong>Methods: </strong>To assess the relationships between individual blood serum PFAS levels and the risk of total CVD or its subtypes, multivariable logistic regression analysis and partial least squares discriminant analysis (PLS-DA) were conducted on all participants or subgroups among 3391 adults from the National Health and Nutrition Examination Survey (NHANES). The SuperPred and GeneCards databases were utilized to identify potential targets related to PFAS and CVD, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersection genes were performed using Metascape. Protein interaction networks were generated, and core targets were identified with STRING. Molecular docking was achieved using Autodock Vina 1.1.2.</p><p><strong>Results: </strong>There was a positive association between Me-PFOSA-AcOH and CVD (OR = 1.28, <i>p</i> = 0.022), especially coronary heart disease (CHD) (OR = 1.47, <i>p</i> = 0.007) and heart attack (OR = 1.58, <i>p</i> < 0.001) after adjusting for all potential covariates. Me-PFOSA-AcOH contributed the most to distinguishing between individuals in terms of CVD and non-CVD. Significant moderating effects for Me-PFOSA-AcOH were observed in the subgroup analysis stratified by sex, ethnicity, education level, PIR, BMI, smoking status, physical activity, and hypertension (<i>p</i> < 0.05). The potential intersection targets were mainly enriched in CVD-related pathways, including the inflammatory response, neuroactive ligand-receptor interaction, MAPK signaling pathway, and arachidonic acid metabolism. TLR4 was identified as the core target for the effects of Me-PFOSA-AcOH on CVD. Molecular docking results revealed that the binding energy of Me-PFOSA-AcOH to the TLR4-MD-2 complex was -7.2 kcal/mol, suggesting that Me-PFOSA-AcOH binds well to the TLR4-MD-2 complex.</p><p><strong>Conclusions: </strong>Me-PFOSA-AcOH exposure was significantly associated with CVD. Network toxicology and molecular docking uncovered novel molecular targets, such as TLR4, and identified the inflammatory and metabolic mechanisms underlying Me-PFOSA-AcOH-induced CVD.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12100693\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100693","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
TLR4 as a Potential Target of Me-PFOSA-AcOH Leading to Cardiovascular Diseases: Evidence from NHANES 2013-2018 and Molecular Docking.
Background: Concerns have been raised regarding the effects of perfluoroalkyl substance (PFAS) exposure on cardiovascular diseases (CVD), but clear evidence linking PFAS exposure to CVD is lacking, and the mechanism remains unclear.
Objectives: To study the association between PFASs and CVD in U.S. population, and to reveal the mechanism of PFASs' effects on CVD.
Methods: To assess the relationships between individual blood serum PFAS levels and the risk of total CVD or its subtypes, multivariable logistic regression analysis and partial least squares discriminant analysis (PLS-DA) were conducted on all participants or subgroups among 3391 adults from the National Health and Nutrition Examination Survey (NHANES). The SuperPred and GeneCards databases were utilized to identify potential targets related to PFAS and CVD, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersection genes were performed using Metascape. Protein interaction networks were generated, and core targets were identified with STRING. Molecular docking was achieved using Autodock Vina 1.1.2.
Results: There was a positive association between Me-PFOSA-AcOH and CVD (OR = 1.28, p = 0.022), especially coronary heart disease (CHD) (OR = 1.47, p = 0.007) and heart attack (OR = 1.58, p < 0.001) after adjusting for all potential covariates. Me-PFOSA-AcOH contributed the most to distinguishing between individuals in terms of CVD and non-CVD. Significant moderating effects for Me-PFOSA-AcOH were observed in the subgroup analysis stratified by sex, ethnicity, education level, PIR, BMI, smoking status, physical activity, and hypertension (p < 0.05). The potential intersection targets were mainly enriched in CVD-related pathways, including the inflammatory response, neuroactive ligand-receptor interaction, MAPK signaling pathway, and arachidonic acid metabolism. TLR4 was identified as the core target for the effects of Me-PFOSA-AcOH on CVD. Molecular docking results revealed that the binding energy of Me-PFOSA-AcOH to the TLR4-MD-2 complex was -7.2 kcal/mol, suggesting that Me-PFOSA-AcOH binds well to the TLR4-MD-2 complex.
Conclusions: Me-PFOSA-AcOH exposure was significantly associated with CVD. Network toxicology and molecular docking uncovered novel molecular targets, such as TLR4, and identified the inflammatory and metabolic mechanisms underlying Me-PFOSA-AcOH-induced CVD.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.