Thies J N van der Lelij, Willem Grootjans, Kevin J Braamhaar, Pieter Bas de Witte
{"title":"自动测量儿科患者的长腿X光片:评估基于人工智能算法的试点研究。","authors":"Thies J N van der Lelij, Willem Grootjans, Kevin J Braamhaar, Pieter Bas de Witte","doi":"10.3390/children11101182","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Assessment of long leg radiographs (LLRs) in pediatric orthopedic patients is an important but time-consuming routine task for clinicians. The goal of this study was to evaluate the performance of artificial intelligence (AI)-based leg angle measurement assistant software (LAMA) in measuring LLRs in pediatric patients, compared to traditional manual measurements.</p><p><strong>Methods: </strong>Eligible patients, aged 11 to 18 years old, referred for LLR between January and March 2022 were included. The study comprised 29 patients (58 legs, 377 measurements). The femur length, tibia length, full leg length (FLL), leg length discrepancy (LLD), hip-knee-ankle angle (HKA), mechanical lateral distal femoral angle (mLDFA), and mechanical medial proximal tibial angle (mMPTA) were measured automatically using LAMA and compared to manual measurements of a senior pediatric orthopedic surgeon and an advanced practitioner in radiography.</p><p><strong>Results: </strong>Correct landmark placement with AI was achieved in 76% of the cases for LLD measurements, 88% for FLL and femur length, 91% for mLDFA, 97% for HKA, 98% for mMPTA, and 100% for tibia length. Intraclass correlation coefficients (ICCs) indicated moderate to excellent agreement between AI and manual measurements, ranging from 0.73 (95% confidence interval (CI): 0.54 to 0.84) to 1.00 (95%CI: 1.00 to 1.00).</p><p><strong>Conclusion: </strong>In cases of correct landmark placement, AI-based algorithm measurements on LLRs of pediatric patients showed high agreement with manual measurements.</p>","PeriodicalId":48588,"journal":{"name":"Children-Basel","volume":"11 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated Measurements of Long Leg Radiographs in Pediatric Patients: A Pilot Study to Evaluate an Artificial Intelligence-Based Algorithm.\",\"authors\":\"Thies J N van der Lelij, Willem Grootjans, Kevin J Braamhaar, Pieter Bas de Witte\",\"doi\":\"10.3390/children11101182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Assessment of long leg radiographs (LLRs) in pediatric orthopedic patients is an important but time-consuming routine task for clinicians. The goal of this study was to evaluate the performance of artificial intelligence (AI)-based leg angle measurement assistant software (LAMA) in measuring LLRs in pediatric patients, compared to traditional manual measurements.</p><p><strong>Methods: </strong>Eligible patients, aged 11 to 18 years old, referred for LLR between January and March 2022 were included. The study comprised 29 patients (58 legs, 377 measurements). The femur length, tibia length, full leg length (FLL), leg length discrepancy (LLD), hip-knee-ankle angle (HKA), mechanical lateral distal femoral angle (mLDFA), and mechanical medial proximal tibial angle (mMPTA) were measured automatically using LAMA and compared to manual measurements of a senior pediatric orthopedic surgeon and an advanced practitioner in radiography.</p><p><strong>Results: </strong>Correct landmark placement with AI was achieved in 76% of the cases for LLD measurements, 88% for FLL and femur length, 91% for mLDFA, 97% for HKA, 98% for mMPTA, and 100% for tibia length. Intraclass correlation coefficients (ICCs) indicated moderate to excellent agreement between AI and manual measurements, ranging from 0.73 (95% confidence interval (CI): 0.54 to 0.84) to 1.00 (95%CI: 1.00 to 1.00).</p><p><strong>Conclusion: </strong>In cases of correct landmark placement, AI-based algorithm measurements on LLRs of pediatric patients showed high agreement with manual measurements.</p>\",\"PeriodicalId\":48588,\"journal\":{\"name\":\"Children-Basel\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Children-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/children11101182\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Children-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/children11101182","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
Automated Measurements of Long Leg Radiographs in Pediatric Patients: A Pilot Study to Evaluate an Artificial Intelligence-Based Algorithm.
Background: Assessment of long leg radiographs (LLRs) in pediatric orthopedic patients is an important but time-consuming routine task for clinicians. The goal of this study was to evaluate the performance of artificial intelligence (AI)-based leg angle measurement assistant software (LAMA) in measuring LLRs in pediatric patients, compared to traditional manual measurements.
Methods: Eligible patients, aged 11 to 18 years old, referred for LLR between January and March 2022 were included. The study comprised 29 patients (58 legs, 377 measurements). The femur length, tibia length, full leg length (FLL), leg length discrepancy (LLD), hip-knee-ankle angle (HKA), mechanical lateral distal femoral angle (mLDFA), and mechanical medial proximal tibial angle (mMPTA) were measured automatically using LAMA and compared to manual measurements of a senior pediatric orthopedic surgeon and an advanced practitioner in radiography.
Results: Correct landmark placement with AI was achieved in 76% of the cases for LLD measurements, 88% for FLL and femur length, 91% for mLDFA, 97% for HKA, 98% for mMPTA, and 100% for tibia length. Intraclass correlation coefficients (ICCs) indicated moderate to excellent agreement between AI and manual measurements, ranging from 0.73 (95% confidence interval (CI): 0.54 to 0.84) to 1.00 (95%CI: 1.00 to 1.00).
Conclusion: In cases of correct landmark placement, AI-based algorithm measurements on LLRs of pediatric patients showed high agreement with manual measurements.
期刊介绍:
Children is an international, open access journal dedicated to a streamlined, yet scientifically rigorous, dissemination of peer-reviewed science related to childhood health and disease in developed and developing countries.
The publication focuses on sharing clinical, epidemiological and translational science relevant to children’s health. Moreover, the primary goals of the publication are to highlight under‑represented pediatric disciplines, to emphasize interdisciplinary research and to disseminate advances in knowledge in global child health. In addition to original research, the journal publishes expert editorials and commentaries, clinical case reports, and insightful communications reflecting the latest developments in pediatric medicine. By publishing meritorious articles as soon as the editorial review process is completed, rather than at predefined intervals, Children also permits rapid open access sharing of new information, allowing us to reach the broadest audience in the most expedient fashion.