Jason P Ware, Delaney K Shea, Shelby L Nicholas, Ella A Stimson, Jessica L Riesterer, Stuart D Ibsen
{"title":"利用介电泳技术从人体血浆中回收和分析细菌膜泡纳米颗粒","authors":"Jason P Ware, Delaney K Shea, Shelby L Nicholas, Ella A Stimson, Jessica L Riesterer, Stuart D Ibsen","doi":"10.3390/bios14100456","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial membrane vesicle (BMV) nanoparticles are secreted naturally by bacteria throughout their lifecycle and are a rich source of biomarkers from the parent bacteria, but they are currently underutilized for clinical diagnostic applications, such as pathogen identification, due to the time-consuming and low-yield nature of traditional recovery methods required for analysis. The recovery of BMVs is particularly difficult from complex biological fluids. Here, we demonstrate a recovery method that uses dielectrophoretic (DEP) forces generated on electrokinetic microfluidic chips to isolate and analyze BMVs from human plasma. DEP takes advantage of the natural difference in dielectric properties between the BMVs and the surrounding plasma fluid to quickly and consistently collect these particles from as little as 25 µL of plasma. Using DEP and immunofluorescence staining of the LPS biomarker carried on BMVs, we have demonstrated a lower limit of detection of 4.31 × 10<sup>9</sup> BMVs/mL. The successful isolation of BMVs from human plasma using DEP, and subsequent on-chip immunostaining for biomarkers, enables the development of future assays to identify the presence of specific bacterial species by analyzing BMVs from small amounts of complex body fluid.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505931/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recovery and Analysis of Bacterial Membrane Vesicle Nanoparticles from Human Plasma Using Dielectrophoresis.\",\"authors\":\"Jason P Ware, Delaney K Shea, Shelby L Nicholas, Ella A Stimson, Jessica L Riesterer, Stuart D Ibsen\",\"doi\":\"10.3390/bios14100456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial membrane vesicle (BMV) nanoparticles are secreted naturally by bacteria throughout their lifecycle and are a rich source of biomarkers from the parent bacteria, but they are currently underutilized for clinical diagnostic applications, such as pathogen identification, due to the time-consuming and low-yield nature of traditional recovery methods required for analysis. The recovery of BMVs is particularly difficult from complex biological fluids. Here, we demonstrate a recovery method that uses dielectrophoretic (DEP) forces generated on electrokinetic microfluidic chips to isolate and analyze BMVs from human plasma. DEP takes advantage of the natural difference in dielectric properties between the BMVs and the surrounding plasma fluid to quickly and consistently collect these particles from as little as 25 µL of plasma. Using DEP and immunofluorescence staining of the LPS biomarker carried on BMVs, we have demonstrated a lower limit of detection of 4.31 × 10<sup>9</sup> BMVs/mL. The successful isolation of BMVs from human plasma using DEP, and subsequent on-chip immunostaining for biomarkers, enables the development of future assays to identify the presence of specific bacterial species by analyzing BMVs from small amounts of complex body fluid.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505931/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios14100456\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100456","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Recovery and Analysis of Bacterial Membrane Vesicle Nanoparticles from Human Plasma Using Dielectrophoresis.
Bacterial membrane vesicle (BMV) nanoparticles are secreted naturally by bacteria throughout their lifecycle and are a rich source of biomarkers from the parent bacteria, but they are currently underutilized for clinical diagnostic applications, such as pathogen identification, due to the time-consuming and low-yield nature of traditional recovery methods required for analysis. The recovery of BMVs is particularly difficult from complex biological fluids. Here, we demonstrate a recovery method that uses dielectrophoretic (DEP) forces generated on electrokinetic microfluidic chips to isolate and analyze BMVs from human plasma. DEP takes advantage of the natural difference in dielectric properties between the BMVs and the surrounding plasma fluid to quickly and consistently collect these particles from as little as 25 µL of plasma. Using DEP and immunofluorescence staining of the LPS biomarker carried on BMVs, we have demonstrated a lower limit of detection of 4.31 × 109 BMVs/mL. The successful isolation of BMVs from human plasma using DEP, and subsequent on-chip immunostaining for biomarkers, enables the development of future assays to identify the presence of specific bacterial species by analyzing BMVs from small amounts of complex body fluid.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.