Shakila Parveen Asrafali, Thirukumaran Periyasamy, Seong Cheol Kim, Jaewoong Lee
{"title":"利用 NRPC/NiMn 框架的界面超组装对食品中的多菌灵杀菌剂进行先进的电化学监测","authors":"Shakila Parveen Asrafali, Thirukumaran Periyasamy, Seong Cheol Kim, Jaewoong Lee","doi":"10.3390/bios14100474","DOIUrl":null,"url":null,"abstract":"<p><p>A simple, sensitive and reliable sensing system based on nitrogen-rich porous carbon (NRPC) and transition metals, NRPC/Ni, NRPC/Mn and NRPC/NiMn was developed and successfully applied as electrode materials for the quantitative determination of carbendazim (CBZ). The synergistic effect of NRPC and bimetals with acceptable pore structure together with flower-like morphology resulted in producing a highly conductive and interconnected network in NRPC/NiMn@GCE, which significantly enhanced the detection performance of CBZ. The electrochemical behavior investigated by cyclic voltammetry (CV) showed improved CBZ detection for NRPC/NiMn, due to the controlled adsorption/diffusion process of CBZ by the NRPC/NiMn@GCE electrode. The influences of various factors such as pH, NRPC/NiMn concentration, CBZ concentration and scan rate were studied. Under optimal conditions, 0.1 M phosphate-buffered saline (PBS) with a pH of 7.0 containing 30 µg/mL NRPC/NiMn, a favourable linear range detection of CBZ from 5 to 50 µM was obtained. Moreover, a chronoamperometric analysis showed excellent repeatability, reproducibility and anti-interfering ability of the fabricated NRPC/NiMn@GCE sensor. Furthermore, the sensor showed satisfactory results for CBZ detection in real samples with acceptable recoveries of 96.40-104.98% and low RSD values of 0.25-3.45%.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505953/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced Electrochemical Monitoring of Carbendazim Fungicide in Foods Using Interfacial Superassembly of NRPC/NiMn Frameworks.\",\"authors\":\"Shakila Parveen Asrafali, Thirukumaran Periyasamy, Seong Cheol Kim, Jaewoong Lee\",\"doi\":\"10.3390/bios14100474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A simple, sensitive and reliable sensing system based on nitrogen-rich porous carbon (NRPC) and transition metals, NRPC/Ni, NRPC/Mn and NRPC/NiMn was developed and successfully applied as electrode materials for the quantitative determination of carbendazim (CBZ). The synergistic effect of NRPC and bimetals with acceptable pore structure together with flower-like morphology resulted in producing a highly conductive and interconnected network in NRPC/NiMn@GCE, which significantly enhanced the detection performance of CBZ. The electrochemical behavior investigated by cyclic voltammetry (CV) showed improved CBZ detection for NRPC/NiMn, due to the controlled adsorption/diffusion process of CBZ by the NRPC/NiMn@GCE electrode. The influences of various factors such as pH, NRPC/NiMn concentration, CBZ concentration and scan rate were studied. Under optimal conditions, 0.1 M phosphate-buffered saline (PBS) with a pH of 7.0 containing 30 µg/mL NRPC/NiMn, a favourable linear range detection of CBZ from 5 to 50 µM was obtained. Moreover, a chronoamperometric analysis showed excellent repeatability, reproducibility and anti-interfering ability of the fabricated NRPC/NiMn@GCE sensor. Furthermore, the sensor showed satisfactory results for CBZ detection in real samples with acceptable recoveries of 96.40-104.98% and low RSD values of 0.25-3.45%.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios14100474\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100474","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Advanced Electrochemical Monitoring of Carbendazim Fungicide in Foods Using Interfacial Superassembly of NRPC/NiMn Frameworks.
A simple, sensitive and reliable sensing system based on nitrogen-rich porous carbon (NRPC) and transition metals, NRPC/Ni, NRPC/Mn and NRPC/NiMn was developed and successfully applied as electrode materials for the quantitative determination of carbendazim (CBZ). The synergistic effect of NRPC and bimetals with acceptable pore structure together with flower-like morphology resulted in producing a highly conductive and interconnected network in NRPC/NiMn@GCE, which significantly enhanced the detection performance of CBZ. The electrochemical behavior investigated by cyclic voltammetry (CV) showed improved CBZ detection for NRPC/NiMn, due to the controlled adsorption/diffusion process of CBZ by the NRPC/NiMn@GCE electrode. The influences of various factors such as pH, NRPC/NiMn concentration, CBZ concentration and scan rate were studied. Under optimal conditions, 0.1 M phosphate-buffered saline (PBS) with a pH of 7.0 containing 30 µg/mL NRPC/NiMn, a favourable linear range detection of CBZ from 5 to 50 µM was obtained. Moreover, a chronoamperometric analysis showed excellent repeatability, reproducibility and anti-interfering ability of the fabricated NRPC/NiMn@GCE sensor. Furthermore, the sensor showed satisfactory results for CBZ detection in real samples with acceptable recoveries of 96.40-104.98% and low RSD values of 0.25-3.45%.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.