Rachel Visontay , Lindsay M. Squeglia , Matthew Sunderland , Emma K. Devine , Hollie Byrne , Louise Mewton
{"title":"加强基于人群的儿童和青少年神经影像数据的因果推理。","authors":"Rachel Visontay , Lindsay M. Squeglia , Matthew Sunderland , Emma K. Devine , Hollie Byrne , Louise Mewton","doi":"10.1016/j.dcn.2024.101465","DOIUrl":null,"url":null,"abstract":"<div><div>Recent years have seen the increasing availability of large, population-based, longitudinal neuroimaging datasets, providing unprecedented capacity to examine brain-behavior relationships in the neurodevelopmental context. However, the ability of these datasets to deliver <em>causal</em> insights into brain-behavior relationships relies on the application of purpose-built analysis methods to counter the biases that otherwise preclude causal inference from observational data. Here we introduce these approaches (i.e., propensity score-based methods, the ‘G-methods’, targeted maximum likelihood estimation, and causal mediation analysis) and conduct a review to determine the extent to which they have been applied thus far in the field of developmental cognitive neuroscience. We identify just eight relevant studies, most of which employ propensity score-based methods. Many approaches are entirely absent from the literature, particularly those that promote causal inference in settings with complex, multi-wave data and repeated neuroimaging assessments. Causality is central to an etiological understanding of the relationship between the brain and behavior, as well as for identifying targets for prevention and intervention. Careful application of methods for causal inference may help the field of developmental cognitive neuroscience approach these goals.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"70 ","pages":"Article 101465"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing causal inference in population-based neuroimaging data in children and adolescents\",\"authors\":\"Rachel Visontay , Lindsay M. Squeglia , Matthew Sunderland , Emma K. Devine , Hollie Byrne , Louise Mewton\",\"doi\":\"10.1016/j.dcn.2024.101465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent years have seen the increasing availability of large, population-based, longitudinal neuroimaging datasets, providing unprecedented capacity to examine brain-behavior relationships in the neurodevelopmental context. However, the ability of these datasets to deliver <em>causal</em> insights into brain-behavior relationships relies on the application of purpose-built analysis methods to counter the biases that otherwise preclude causal inference from observational data. Here we introduce these approaches (i.e., propensity score-based methods, the ‘G-methods’, targeted maximum likelihood estimation, and causal mediation analysis) and conduct a review to determine the extent to which they have been applied thus far in the field of developmental cognitive neuroscience. We identify just eight relevant studies, most of which employ propensity score-based methods. Many approaches are entirely absent from the literature, particularly those that promote causal inference in settings with complex, multi-wave data and repeated neuroimaging assessments. Causality is central to an etiological understanding of the relationship between the brain and behavior, as well as for identifying targets for prevention and intervention. Careful application of methods for causal inference may help the field of developmental cognitive neuroscience approach these goals.</div></div>\",\"PeriodicalId\":49083,\"journal\":{\"name\":\"Developmental Cognitive Neuroscience\",\"volume\":\"70 \",\"pages\":\"Article 101465\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878929324001269\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929324001269","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Enhancing causal inference in population-based neuroimaging data in children and adolescents
Recent years have seen the increasing availability of large, population-based, longitudinal neuroimaging datasets, providing unprecedented capacity to examine brain-behavior relationships in the neurodevelopmental context. However, the ability of these datasets to deliver causal insights into brain-behavior relationships relies on the application of purpose-built analysis methods to counter the biases that otherwise preclude causal inference from observational data. Here we introduce these approaches (i.e., propensity score-based methods, the ‘G-methods’, targeted maximum likelihood estimation, and causal mediation analysis) and conduct a review to determine the extent to which they have been applied thus far in the field of developmental cognitive neuroscience. We identify just eight relevant studies, most of which employ propensity score-based methods. Many approaches are entirely absent from the literature, particularly those that promote causal inference in settings with complex, multi-wave data and repeated neuroimaging assessments. Causality is central to an etiological understanding of the relationship between the brain and behavior, as well as for identifying targets for prevention and intervention. Careful application of methods for causal inference may help the field of developmental cognitive neuroscience approach these goals.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.