PIM-1L 激酶与 SRPK1 结合并使其失活:一项生物化学和分子动力学研究。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-27 DOI:10.1002/prot.26757
Nastazia Lesgidou, Anastasia Koukiali, Eleni Nikolakaki, Thomas Giannakouros, Metaxia Vlassi
{"title":"PIM-1L 激酶与 SRPK1 结合并使其失活:一项生物化学和分子动力学研究。","authors":"Nastazia Lesgidou, Anastasia Koukiali, Eleni Nikolakaki, Thomas Giannakouros, Metaxia Vlassi","doi":"10.1002/prot.26757","DOIUrl":null,"url":null,"abstract":"<p><p>SR/RS dipeptide repeats vary in both length and position, and are phosphorylated by SR protein kinases (SRPKs). PIM-1L, the long isoform of PIM-1 kinase, the splicing of which has been implicated in acute myeloid leukemia, contains a domain that consists largely of repeating SR/RS and SH/HS dipeptides (SR/SH-rich). In order to extend our knowledge on the specificity and cellular functions of SRPK1, here we investigate whether PIM-1L could act as substrate of SRPK1 by a combination of biochemical and computational approaches. Our biochemical data showed that the SR/SH-rich domain of PIM-1L was able to associate with SRPK1, yet it could not act as a substrate but, instead, inactivated the kinase. In line with our biochemical data, molecular modeling followed by a microsecond-scale all-atom molecular dynamics (MD) simulation suggests that the SR/SH-rich domain acts as a pseudo-docking peptide that binds to the same acidic docking-groove used in other SRPK1 interactions and induces inactive SRPK1 conformations. Comparative community network analysis of the MD trajectories, unraveled the dynamic architecture of apo SRPK1 and notable alterations of allosteric communications upon PIM-1L peptide binding. This analysis also allowed us to identify key SRPK1 residues, including unique ones, with a pivotal role in mediating allosteric signal propagation within the kinase core. Interestingly, most of the identified amino acids correspond to cancer-associated amino acid changes, validating our results. In total, this work provides insights not only on the details of SRPK1 inhibition by the PIM-1L SR/SH-domain, but also contributes to an in-depth understanding of SRPK1 regulation.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PIM-1L Kinase Binds to and Inactivates SRPK1: A Biochemical and Molecular Dynamics Study.\",\"authors\":\"Nastazia Lesgidou, Anastasia Koukiali, Eleni Nikolakaki, Thomas Giannakouros, Metaxia Vlassi\",\"doi\":\"10.1002/prot.26757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SR/RS dipeptide repeats vary in both length and position, and are phosphorylated by SR protein kinases (SRPKs). PIM-1L, the long isoform of PIM-1 kinase, the splicing of which has been implicated in acute myeloid leukemia, contains a domain that consists largely of repeating SR/RS and SH/HS dipeptides (SR/SH-rich). In order to extend our knowledge on the specificity and cellular functions of SRPK1, here we investigate whether PIM-1L could act as substrate of SRPK1 by a combination of biochemical and computational approaches. Our biochemical data showed that the SR/SH-rich domain of PIM-1L was able to associate with SRPK1, yet it could not act as a substrate but, instead, inactivated the kinase. In line with our biochemical data, molecular modeling followed by a microsecond-scale all-atom molecular dynamics (MD) simulation suggests that the SR/SH-rich domain acts as a pseudo-docking peptide that binds to the same acidic docking-groove used in other SRPK1 interactions and induces inactive SRPK1 conformations. Comparative community network analysis of the MD trajectories, unraveled the dynamic architecture of apo SRPK1 and notable alterations of allosteric communications upon PIM-1L peptide binding. This analysis also allowed us to identify key SRPK1 residues, including unique ones, with a pivotal role in mediating allosteric signal propagation within the kinase core. Interestingly, most of the identified amino acids correspond to cancer-associated amino acid changes, validating our results. In total, this work provides insights not only on the details of SRPK1 inhibition by the PIM-1L SR/SH-domain, but also contributes to an in-depth understanding of SRPK1 regulation.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26757\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26757","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SR/RS 二肽重复序列的长度和位置各不相同,并被 SR 蛋白激酶(SRPKs)磷酸化。PIM-1L是PIM-1激酶的长异构体,其剪接与急性髓性白血病有关,它含有一个主要由重复的SR/RS和SH/HS二肽(富含SR/SH)组成的结构域。为了扩展我们对 SRPK1 特异性和细胞功能的认识,我们在此通过生化和计算相结合的方法研究 PIM-1L 能否作为 SRPK1 的底物。我们的生化数据显示,PIM-1L的富含SR/SH的结构域能够与SRPK1结合,但它不能作为底物,反而会使激酶失活。与我们的生化数据相一致,分子建模后的微秒级全原子分子动力学(MD)模拟表明,富含 SR/SH 的结构域是一种伪对接肽,它与其他 SRPK1 相互作用中使用的酸性对接沟槽结合,并诱导 SRPK1 的非活性构象。对 MD 轨迹的群落网络比较分析揭示了 apo SRPK1 的动态结构,以及 PIM-1L 肽结合后异构通讯的显著变化。这项分析还让我们确定了关键的 SRPK1 残基,包括在激酶核心内介导异构信号传播中起关键作用的独特残基。有趣的是,大多数被鉴定的氨基酸都与癌症相关的氨基酸变化相对应,这验证了我们的研究结果。总之,这项工作不仅深入揭示了 PIM-1L SR/SH 域抑制 SRPK1 的细节,而且有助于深入理解 SRPK1 的调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PIM-1L Kinase Binds to and Inactivates SRPK1: A Biochemical and Molecular Dynamics Study.

SR/RS dipeptide repeats vary in both length and position, and are phosphorylated by SR protein kinases (SRPKs). PIM-1L, the long isoform of PIM-1 kinase, the splicing of which has been implicated in acute myeloid leukemia, contains a domain that consists largely of repeating SR/RS and SH/HS dipeptides (SR/SH-rich). In order to extend our knowledge on the specificity and cellular functions of SRPK1, here we investigate whether PIM-1L could act as substrate of SRPK1 by a combination of biochemical and computational approaches. Our biochemical data showed that the SR/SH-rich domain of PIM-1L was able to associate with SRPK1, yet it could not act as a substrate but, instead, inactivated the kinase. In line with our biochemical data, molecular modeling followed by a microsecond-scale all-atom molecular dynamics (MD) simulation suggests that the SR/SH-rich domain acts as a pseudo-docking peptide that binds to the same acidic docking-groove used in other SRPK1 interactions and induces inactive SRPK1 conformations. Comparative community network analysis of the MD trajectories, unraveled the dynamic architecture of apo SRPK1 and notable alterations of allosteric communications upon PIM-1L peptide binding. This analysis also allowed us to identify key SRPK1 residues, including unique ones, with a pivotal role in mediating allosteric signal propagation within the kinase core. Interestingly, most of the identified amino acids correspond to cancer-associated amino acid changes, validating our results. In total, this work provides insights not only on the details of SRPK1 inhibition by the PIM-1L SR/SH-domain, but also contributes to an in-depth understanding of SRPK1 regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1