{"title":"用化学计量法同时估算散装药物中的普拉格雷和阿司匹林。","authors":"Urvish Desai, Jenee Christian, B.N. Suhagia","doi":"10.1016/j.saa.2024.125306","DOIUrl":null,"url":null,"abstract":"<div><div>A UV–Vis spectrophotometric method enhanced by chemometric techniques, specifically Principal Component Regression (PCR) and Partial Least Squares (PLS) regression, was developed and validated for the simultaneous quantification of prasugrel (PRA) and aspirin (ASP) in bulk drugs and pharmaceutical formulations. The method demonstrated high accuracy, precision, and robustness, achieving mean recoveries of 100.63% for PRA and 100.08% for ASP with relative standard deviations (RSD) below 3%. Both PCR and PLS models showed excellent predictive capabilities, with RMSEP values of 0.45–0.48 for PRA and 0.78–1.13 for ASP, indicating the models’ reliability. In line with green and white chemistry principles, the method minimizes environmental impact by reducing solvent consumption and waste generation compared to traditional chromatographic methods. The Analytical Eco-Scale score was 84, reflecting excellent compliance with green chemistry standards. The method’s simplicity, low energy consumption, and reduced chemical waste further support its alignment with sustainability goals. However, acetonitrile, a hazardous solvent, was still used in small quantities, and solvent recycling was not implemented, slightly affecting the eco-score. To evaluate the method’s greenness, the RGB12 algorithm was applied, achieving a high score of 94.4%, with the majority of parameters related to reagent consumption, waste production, energy efficiency, and safety scoring optimally. The method’s safety, cost-effectiveness, and minimal environmental footprint make it suitable for routine pharmaceutical analysis, particularly in quality control environments where resource efficiency and sustainability are prioritized. Thus, the developed method offers a sustainable, efficient, and environmentally friendly solution for the simultaneous analysis of prasugrel and aspirin in pharmaceutical formulations, making it a valuable tool for routine analysis in the pharmaceutical industry.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"327 ","pages":"Article 125306"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous estimation of prasugrel and aspirin in bulk drugs by chemometric methods\",\"authors\":\"Urvish Desai, Jenee Christian, B.N. Suhagia\",\"doi\":\"10.1016/j.saa.2024.125306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A UV–Vis spectrophotometric method enhanced by chemometric techniques, specifically Principal Component Regression (PCR) and Partial Least Squares (PLS) regression, was developed and validated for the simultaneous quantification of prasugrel (PRA) and aspirin (ASP) in bulk drugs and pharmaceutical formulations. The method demonstrated high accuracy, precision, and robustness, achieving mean recoveries of 100.63% for PRA and 100.08% for ASP with relative standard deviations (RSD) below 3%. Both PCR and PLS models showed excellent predictive capabilities, with RMSEP values of 0.45–0.48 for PRA and 0.78–1.13 for ASP, indicating the models’ reliability. In line with green and white chemistry principles, the method minimizes environmental impact by reducing solvent consumption and waste generation compared to traditional chromatographic methods. The Analytical Eco-Scale score was 84, reflecting excellent compliance with green chemistry standards. The method’s simplicity, low energy consumption, and reduced chemical waste further support its alignment with sustainability goals. However, acetonitrile, a hazardous solvent, was still used in small quantities, and solvent recycling was not implemented, slightly affecting the eco-score. To evaluate the method’s greenness, the RGB12 algorithm was applied, achieving a high score of 94.4%, with the majority of parameters related to reagent consumption, waste production, energy efficiency, and safety scoring optimally. The method’s safety, cost-effectiveness, and minimal environmental footprint make it suitable for routine pharmaceutical analysis, particularly in quality control environments where resource efficiency and sustainability are prioritized. Thus, the developed method offers a sustainable, efficient, and environmentally friendly solution for the simultaneous analysis of prasugrel and aspirin in pharmaceutical formulations, making it a valuable tool for routine analysis in the pharmaceutical industry.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"327 \",\"pages\":\"Article 125306\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142524014720\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524014720","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Simultaneous estimation of prasugrel and aspirin in bulk drugs by chemometric methods
A UV–Vis spectrophotometric method enhanced by chemometric techniques, specifically Principal Component Regression (PCR) and Partial Least Squares (PLS) regression, was developed and validated for the simultaneous quantification of prasugrel (PRA) and aspirin (ASP) in bulk drugs and pharmaceutical formulations. The method demonstrated high accuracy, precision, and robustness, achieving mean recoveries of 100.63% for PRA and 100.08% for ASP with relative standard deviations (RSD) below 3%. Both PCR and PLS models showed excellent predictive capabilities, with RMSEP values of 0.45–0.48 for PRA and 0.78–1.13 for ASP, indicating the models’ reliability. In line with green and white chemistry principles, the method minimizes environmental impact by reducing solvent consumption and waste generation compared to traditional chromatographic methods. The Analytical Eco-Scale score was 84, reflecting excellent compliance with green chemistry standards. The method’s simplicity, low energy consumption, and reduced chemical waste further support its alignment with sustainability goals. However, acetonitrile, a hazardous solvent, was still used in small quantities, and solvent recycling was not implemented, slightly affecting the eco-score. To evaluate the method’s greenness, the RGB12 algorithm was applied, achieving a high score of 94.4%, with the majority of parameters related to reagent consumption, waste production, energy efficiency, and safety scoring optimally. The method’s safety, cost-effectiveness, and minimal environmental footprint make it suitable for routine pharmaceutical analysis, particularly in quality control environments where resource efficiency and sustainability are prioritized. Thus, the developed method offers a sustainable, efficient, and environmentally friendly solution for the simultaneous analysis of prasugrel and aspirin in pharmaceutical formulations, making it a valuable tool for routine analysis in the pharmaceutical industry.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.