拟南芥中磷脂酰肌醇 4-磷酸 5-激酶 7、9 和壁相关激酶 1-3 对吲哚-3-卡比醇和生物胁迫反应的作用研究

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomolecules Pub Date : 2024-10-03 DOI:10.3390/biom14101253
Hala Khamesa-Israelov, Alin Finkelstein, Eilon Shani, Daniel A Chamovitz
{"title":"拟南芥中磷脂酰肌醇 4-磷酸 5-激酶 7、9 和壁相关激酶 1-3 对吲哚-3-卡比醇和生物胁迫反应的作用研究","authors":"Hala Khamesa-Israelov, Alin Finkelstein, Eilon Shani, Daniel A Chamovitz","doi":"10.3390/biom14101253","DOIUrl":null,"url":null,"abstract":"<p><p>Indole-3-carbinol (I3C), a hydrolysis product of indole-3-methylglucosinolate, is toxic to herbivorous insects and pathogens. In mammals, I3C is extensively studied for its properties in cancer prevention and treatment. Produced in Brassicaceae, I3C reversibly inhibits root elongation in a concentration-dependent manner. This inhibition is partially explained by the antagonistic action of I3C on auxin signaling through TIR1. To further elucidate the mode of action of I3C in plants, we have employed a forward-genetic amiRNA screen that circumvents functional redundancy. We identified and characterized two amiRNA lines with impaired I3C response. The first line, <i>ICT2</i>, targets the phosphatidylinositol 4-phosphate 5-kinase family (PIP5K), exhibiting tolerance to I3C, while the second line, <i>ICS1</i>, targets the Wall-Associated Kinases (WAK1-3) family, showing susceptibility to I3C. Both lines maintain I3C-induced antagonism of auxin signaling, indicating that their phenotypes are due to auxin-independent mechanisms. Transcript profiling experiments reveal that both lines are transcriptionally primed to respond to I3C treatment. Physiological, metabolomic, and transcriptomic analysis reveal that these kinases mediate numerous developmental processes and are involved in abiotic and biotic stress responses.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506499/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Roles of Phosphatidylinositol 4-Phosphate 5-Kinases 7,9 and Wall-Associated Kinases 1-3 in Responses to Indole-3-Carbinol and Biotic Stress in Arabidopsis Thaliana.\",\"authors\":\"Hala Khamesa-Israelov, Alin Finkelstein, Eilon Shani, Daniel A Chamovitz\",\"doi\":\"10.3390/biom14101253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Indole-3-carbinol (I3C), a hydrolysis product of indole-3-methylglucosinolate, is toxic to herbivorous insects and pathogens. In mammals, I3C is extensively studied for its properties in cancer prevention and treatment. Produced in Brassicaceae, I3C reversibly inhibits root elongation in a concentration-dependent manner. This inhibition is partially explained by the antagonistic action of I3C on auxin signaling through TIR1. To further elucidate the mode of action of I3C in plants, we have employed a forward-genetic amiRNA screen that circumvents functional redundancy. We identified and characterized two amiRNA lines with impaired I3C response. The first line, <i>ICT2</i>, targets the phosphatidylinositol 4-phosphate 5-kinase family (PIP5K), exhibiting tolerance to I3C, while the second line, <i>ICS1</i>, targets the Wall-Associated Kinases (WAK1-3) family, showing susceptibility to I3C. Both lines maintain I3C-induced antagonism of auxin signaling, indicating that their phenotypes are due to auxin-independent mechanisms. Transcript profiling experiments reveal that both lines are transcriptionally primed to respond to I3C treatment. Physiological, metabolomic, and transcriptomic analysis reveal that these kinases mediate numerous developmental processes and are involved in abiotic and biotic stress responses.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506499/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom14101253\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14101253","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

吲哚-3-甲醇(I3C)是吲哚-3-甲基葡萄糖苷酸的水解产物,对食草昆虫和病原体具有毒性。在哺乳动物中,I3C 因其预防和治疗癌症的特性而被广泛研究。在十字花科植物中,I3C 以浓度依赖的方式可逆地抑制根的伸长。这种抑制作用的部分原因是 I3C 通过 TIR1 对辅助素信号传导起拮抗作用。为了进一步阐明 I3C 在植物体内的作用模式,我们采用了一种前向遗传 amiRNA 筛选方法,以规避功能冗余。我们发现并鉴定了两个 I3C 反应受损的 amiRNA 株系。第一个品系ICT2以磷脂酰肌醇-4-磷酸5-激酶家族(PIP5K)为靶标,表现出对I3C的耐受性;第二个品系ICS1以壁相关激酶(WAK1-3)家族为靶标,表现出对I3C的敏感性。这两个品系都保持了 I3C 诱导的植物生长素信号转导的拮抗作用,表明它们的表型是由不依赖于植物生长素的机制造成的。转录谱分析实验显示,这两个品系都对 I3C 处理有转录反应。生理学、代谢组学和转录组学分析表明,这些激酶介导了许多发育过程,并参与了非生物和生物胁迫响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Roles of Phosphatidylinositol 4-Phosphate 5-Kinases 7,9 and Wall-Associated Kinases 1-3 in Responses to Indole-3-Carbinol and Biotic Stress in Arabidopsis Thaliana.

Indole-3-carbinol (I3C), a hydrolysis product of indole-3-methylglucosinolate, is toxic to herbivorous insects and pathogens. In mammals, I3C is extensively studied for its properties in cancer prevention and treatment. Produced in Brassicaceae, I3C reversibly inhibits root elongation in a concentration-dependent manner. This inhibition is partially explained by the antagonistic action of I3C on auxin signaling through TIR1. To further elucidate the mode of action of I3C in plants, we have employed a forward-genetic amiRNA screen that circumvents functional redundancy. We identified and characterized two amiRNA lines with impaired I3C response. The first line, ICT2, targets the phosphatidylinositol 4-phosphate 5-kinase family (PIP5K), exhibiting tolerance to I3C, while the second line, ICS1, targets the Wall-Associated Kinases (WAK1-3) family, showing susceptibility to I3C. Both lines maintain I3C-induced antagonism of auxin signaling, indicating that their phenotypes are due to auxin-independent mechanisms. Transcript profiling experiments reveal that both lines are transcriptionally primed to respond to I3C treatment. Physiological, metabolomic, and transcriptomic analysis reveal that these kinases mediate numerous developmental processes and are involved in abiotic and biotic stress responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Astragalus membranaceus: A Traditional Chinese Medicine with Multifaceted Impacts on Breast Cancer Treatment. Correction: Choi et al. β-Ionone Attenuates Dexamethasone-Induced Suppression of Collagen and Hyaluronic Acid Synthesis in Human Dermal Fibroblasts. Biomolecules 2021, 11, 619. tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators. Cooperative Substructure and Energetics of Allosteric Regulation of the Catalytic Core of the E3 Ubiquitin Ligase Parkin by Phosphorylated Ubiquitin. Chemical Profiling of Polar Lipids and the Polyphenolic Fraction of Commercial Italian Phaseolus Seeds by UHPLC-HRMS and Biological Evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1