{"title":"基于熵生产的无线通信系统能效优化","authors":"Litao Yan;Xiaohu Ge","doi":"10.1109/OJCOMS.2024.3476454","DOIUrl":null,"url":null,"abstract":"The relationship between energy dissipation and information has been extensively studied in the emerging field of stochastic thermodynamics, where entropy production plays a core role in measuring the energy loss of irreversible processes. To analyze and optimize the energy efficiency of wireless communication systems from a fundamental and unified perspective, an entropy production model of a binary wireless communication systems is proposed in this paper for the first time. The proposed model serves as a minimal yet comprehensive model incorporating two key nonequilibrium processes in a wireless communication system: wireless information transmission and information processing. The entropy production of wireless information transmission is derived using tools from stochastic thermodynamics, and it is found that there is a specified transmission rate that minimizes the entropy production. For the information processing, the influence of error rate and parallel number of information processing on entropy production is analyzed, and a serial or parallel processing selection criterion is proposed to minimizes the entropy production. To minimize the total entropy production of wireless communication systems, we propose an optimal channel number algorithm and an optimal time allocation scheme. Simulation results show that the entropy production of the wireless communication system using the optimal time allocation scheme can be reduced by up to 20.2% compared to the traditional approach where the time allocated for wireless information transmission and information processing is equal. The proposed model and optimization method provide a novel perspective on analyzing and enhancing energy efficiency in wireless communication systems.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10711877","citationCount":"0","resultStr":"{\"title\":\"Entropy Production-Based Energy Efficiency Optimization for Wireless Communication Systems\",\"authors\":\"Litao Yan;Xiaohu Ge\",\"doi\":\"10.1109/OJCOMS.2024.3476454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between energy dissipation and information has been extensively studied in the emerging field of stochastic thermodynamics, where entropy production plays a core role in measuring the energy loss of irreversible processes. To analyze and optimize the energy efficiency of wireless communication systems from a fundamental and unified perspective, an entropy production model of a binary wireless communication systems is proposed in this paper for the first time. The proposed model serves as a minimal yet comprehensive model incorporating two key nonequilibrium processes in a wireless communication system: wireless information transmission and information processing. The entropy production of wireless information transmission is derived using tools from stochastic thermodynamics, and it is found that there is a specified transmission rate that minimizes the entropy production. For the information processing, the influence of error rate and parallel number of information processing on entropy production is analyzed, and a serial or parallel processing selection criterion is proposed to minimizes the entropy production. To minimize the total entropy production of wireless communication systems, we propose an optimal channel number algorithm and an optimal time allocation scheme. Simulation results show that the entropy production of the wireless communication system using the optimal time allocation scheme can be reduced by up to 20.2% compared to the traditional approach where the time allocated for wireless information transmission and information processing is equal. The proposed model and optimization method provide a novel perspective on analyzing and enhancing energy efficiency in wireless communication systems.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10711877\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10711877/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10711877/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Entropy Production-Based Energy Efficiency Optimization for Wireless Communication Systems
The relationship between energy dissipation and information has been extensively studied in the emerging field of stochastic thermodynamics, where entropy production plays a core role in measuring the energy loss of irreversible processes. To analyze and optimize the energy efficiency of wireless communication systems from a fundamental and unified perspective, an entropy production model of a binary wireless communication systems is proposed in this paper for the first time. The proposed model serves as a minimal yet comprehensive model incorporating two key nonequilibrium processes in a wireless communication system: wireless information transmission and information processing. The entropy production of wireless information transmission is derived using tools from stochastic thermodynamics, and it is found that there is a specified transmission rate that minimizes the entropy production. For the information processing, the influence of error rate and parallel number of information processing on entropy production is analyzed, and a serial or parallel processing selection criterion is proposed to minimizes the entropy production. To minimize the total entropy production of wireless communication systems, we propose an optimal channel number algorithm and an optimal time allocation scheme. Simulation results show that the entropy production of the wireless communication system using the optimal time allocation scheme can be reduced by up to 20.2% compared to the traditional approach where the time allocated for wireless information transmission and information processing is equal. The proposed model and optimization method provide a novel perspective on analyzing and enhancing energy efficiency in wireless communication systems.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.