利用机器学习加速固态电池电极离子电导率预测

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-10-08 DOI:10.1109/JMMCT.2024.3475988
Mai Le;Alan Yao;Amie Zhang;Hieu Le;Zhaoyang Chen;Xuqing Wu;Lihong Zhao;Jiefu Chen
{"title":"利用机器学习加速固态电池电极离子电导率预测","authors":"Mai Le;Alan Yao;Amie Zhang;Hieu Le;Zhaoyang Chen;Xuqing Wu;Lihong Zhao;Jiefu Chen","doi":"10.1109/JMMCT.2024.3475988","DOIUrl":null,"url":null,"abstract":"Solid-state batteries can offer enhanced safety and potentially higher energy density compared to traditional lithium-ion batteries. However, their power density remains a challenge due to limited ionic conductivity in composite electrodes caused by non-ideal microstructures. Laborious experimental processes and time-consuming data analysis algorithms are obstacles to establishing structure–performance correlations and optimizing electrode microstructure. In this paper, we present a machine learning approach to predict the effective conductivity of a composite electrode based on scanning electron microscopy images, using binary images composed of conductive and non-conductive regions and an ionic conductivity value of the conductive region. We show that our proposed method is two orders of magnitude more efficient than conventional numerical schemes such as the finite difference method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"375-382"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expediting Ionic Conductivity Prediction of Solid-State Battery Electrodes Using Machine Learning\",\"authors\":\"Mai Le;Alan Yao;Amie Zhang;Hieu Le;Zhaoyang Chen;Xuqing Wu;Lihong Zhao;Jiefu Chen\",\"doi\":\"10.1109/JMMCT.2024.3475988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state batteries can offer enhanced safety and potentially higher energy density compared to traditional lithium-ion batteries. However, their power density remains a challenge due to limited ionic conductivity in composite electrodes caused by non-ideal microstructures. Laborious experimental processes and time-consuming data analysis algorithms are obstacles to establishing structure–performance correlations and optimizing electrode microstructure. In this paper, we present a machine learning approach to predict the effective conductivity of a composite electrode based on scanning electron microscopy images, using binary images composed of conductive and non-conductive regions and an ionic conductivity value of the conductive region. We show that our proposed method is two orders of magnitude more efficient than conventional numerical schemes such as the finite difference method.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"9 \",\"pages\":\"375-382\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10707293/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10707293/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

与传统的锂离子电池相比,固态电池可以提高安全性和潜在的高能量密度。然而,由于非理想微结构导致复合电极的离子传导性有限,其功率密度仍然是一个挑战。费力的实验过程和耗时的数据分析算法是建立结构-性能相关性和优化电极微结构的障碍。在本文中,我们提出了一种基于扫描电子显微镜图像的机器学习方法,利用由导电区和非导电区组成的二元图像以及导电区的离子电导率值来预测复合电极的有效电导率。我们的研究表明,我们提出的方法比有限差分法等传统数值方案的效率高两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expediting Ionic Conductivity Prediction of Solid-State Battery Electrodes Using Machine Learning
Solid-state batteries can offer enhanced safety and potentially higher energy density compared to traditional lithium-ion batteries. However, their power density remains a challenge due to limited ionic conductivity in composite electrodes caused by non-ideal microstructures. Laborious experimental processes and time-consuming data analysis algorithms are obstacles to establishing structure–performance correlations and optimizing electrode microstructure. In this paper, we present a machine learning approach to predict the effective conductivity of a composite electrode based on scanning electron microscopy images, using binary images composed of conductive and non-conductive regions and an ionic conductivity value of the conductive region. We show that our proposed method is two orders of magnitude more efficient than conventional numerical schemes such as the finite difference method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1