Daichi Noda, Wanyu Shi, Aiga Yamada, Zizhen Liu and Motohiro Tagaya
{"title":"通过柠檬酸键合层将阳离子染料固定在光致发光羟基磷灰石颗粒上†。","authors":"Daichi Noda, Wanyu Shi, Aiga Yamada, Zizhen Liu and Motohiro Tagaya","doi":"10.1039/D4RE00277F","DOIUrl":null,"url":null,"abstract":"<p >We demonstrated the surface functionalization using citric acid (Cit) as a bonding layer on hydroxyapatite (HAp) nanoparticles. The bonding layer on the Eu(<small>III</small>) ion-doped HAp nanoparticles could be immobilized with the larger amount of cationic porphyrin. The interactions between the immobilized molecules were enhanced at the monomer state with increasing the amount.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2863-2867"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immobilization of cationic dye on photoluminescent hydroxyapatite particles through a citric acid bonding layer†\",\"authors\":\"Daichi Noda, Wanyu Shi, Aiga Yamada, Zizhen Liu and Motohiro Tagaya\",\"doi\":\"10.1039/D4RE00277F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We demonstrated the surface functionalization using citric acid (Cit) as a bonding layer on hydroxyapatite (HAp) nanoparticles. The bonding layer on the Eu(<small>III</small>) ion-doped HAp nanoparticles could be immobilized with the larger amount of cationic porphyrin. The interactions between the immobilized molecules were enhanced at the monomer state with increasing the amount.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 11\",\"pages\":\" 2863-2867\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00277f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00277f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Immobilization of cationic dye on photoluminescent hydroxyapatite particles through a citric acid bonding layer†
We demonstrated the surface functionalization using citric acid (Cit) as a bonding layer on hydroxyapatite (HAp) nanoparticles. The bonding layer on the Eu(III) ion-doped HAp nanoparticles could be immobilized with the larger amount of cationic porphyrin. The interactions between the immobilized molecules were enhanced at the monomer state with increasing the amount.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.