A. Vollpracht, G. J. G. Gluth, B. Rogiers, I. D. Uwanuakwa, Q. T. Phung, Y. Villagran Zaccardi, C. Thiel, H. Vanoutrive, J. M. Etcheverry, E. Gruyaert, S. Kamali-Bernard, A. Kanellopoulos, Z. Zhao, I. M. Martins, S. Rathnarajan, N. De Belie
{"title":"RILEM TC 281-CCC 报告:通过数据挖掘和机器学习方法深入了解影响含 SCM 混凝土碳化率的因素","authors":"A. Vollpracht, G. J. G. Gluth, B. Rogiers, I. D. Uwanuakwa, Q. T. Phung, Y. Villagran Zaccardi, C. Thiel, H. Vanoutrive, J. M. Etcheverry, E. Gruyaert, S. Kamali-Bernard, A. Kanellopoulos, Z. Zhao, I. M. Martins, S. Rathnarajan, N. De Belie","doi":"10.1617/s11527-024-02465-0","DOIUrl":null,"url":null,"abstract":"<div><p>The RILEM TC 281–CCC ‘‘Carbonation of concrete with supplementary cementitious materials’’ conducted a study on the effects of supplementary cementitious materials (SCMs) on the carbonation rate of blended cement concretes and mortars. In this context, a comprehensive database has been established, consisting of 1044 concrete and mortar mixes with their associated carbonation depth data over time. The dataset comprises mix designs with a large variety of binders with up to 94% SCMs, collected from the literature as well as unpublished testing reports. The data includes chemical composition and physical properties of the raw materials, mix-designs, compressive strengths, curing and carbonation testing conditions. Natural carbonation was recorded for several years in many cases with both indoor and outdoor results. The database has been analysed to investigate the effects of binder composition and mix design, curing and preconditioning, and relative humidity on the carbonation rate. Furthermore, the accuracy of accelerated carbonation testing as well as possible correlations between compressive strength and carbonation resistance were evaluated. One approach to summerise the physical and chemical resistance in one parameter is the ratio of water content to content of carbonatable CaO (<i>w</i>/CaO<sub>reactive</sub> ratio). The analysis revealed that the <i>w</i>/CaO<sub>reactive</sub> ratio is a decisive factor for carbonation resistance, while curing and exposure conditions also influence carbonation. Under natural exposure conditions, the carbonation data exhibit significant variations. Nevertheless, probabilistic inference suggests that both accelerated and natural carbonation processes follow a square-root-of-time behavior, though accelerated and natural carbonation cannot be converted into each other without corrections. Additionally, a machine learning technique was employed to assess the influence of parameters governing the carbonation progress in concretes.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02465-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Report of RILEM TC 281-CCC: insights into factors affecting the carbonation rate of concrete with SCMs revealed from data mining and machine learning approaches\",\"authors\":\"A. Vollpracht, G. J. G. Gluth, B. Rogiers, I. D. Uwanuakwa, Q. T. Phung, Y. Villagran Zaccardi, C. Thiel, H. Vanoutrive, J. M. Etcheverry, E. Gruyaert, S. Kamali-Bernard, A. Kanellopoulos, Z. Zhao, I. M. Martins, S. Rathnarajan, N. De Belie\",\"doi\":\"10.1617/s11527-024-02465-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The RILEM TC 281–CCC ‘‘Carbonation of concrete with supplementary cementitious materials’’ conducted a study on the effects of supplementary cementitious materials (SCMs) on the carbonation rate of blended cement concretes and mortars. In this context, a comprehensive database has been established, consisting of 1044 concrete and mortar mixes with their associated carbonation depth data over time. The dataset comprises mix designs with a large variety of binders with up to 94% SCMs, collected from the literature as well as unpublished testing reports. The data includes chemical composition and physical properties of the raw materials, mix-designs, compressive strengths, curing and carbonation testing conditions. Natural carbonation was recorded for several years in many cases with both indoor and outdoor results. The database has been analysed to investigate the effects of binder composition and mix design, curing and preconditioning, and relative humidity on the carbonation rate. Furthermore, the accuracy of accelerated carbonation testing as well as possible correlations between compressive strength and carbonation resistance were evaluated. One approach to summerise the physical and chemical resistance in one parameter is the ratio of water content to content of carbonatable CaO (<i>w</i>/CaO<sub>reactive</sub> ratio). The analysis revealed that the <i>w</i>/CaO<sub>reactive</sub> ratio is a decisive factor for carbonation resistance, while curing and exposure conditions also influence carbonation. Under natural exposure conditions, the carbonation data exhibit significant variations. Nevertheless, probabilistic inference suggests that both accelerated and natural carbonation processes follow a square-root-of-time behavior, though accelerated and natural carbonation cannot be converted into each other without corrections. Additionally, a machine learning technique was employed to assess the influence of parameters governing the carbonation progress in concretes.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-024-02465-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02465-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02465-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Report of RILEM TC 281-CCC: insights into factors affecting the carbonation rate of concrete with SCMs revealed from data mining and machine learning approaches
The RILEM TC 281–CCC ‘‘Carbonation of concrete with supplementary cementitious materials’’ conducted a study on the effects of supplementary cementitious materials (SCMs) on the carbonation rate of blended cement concretes and mortars. In this context, a comprehensive database has been established, consisting of 1044 concrete and mortar mixes with their associated carbonation depth data over time. The dataset comprises mix designs with a large variety of binders with up to 94% SCMs, collected from the literature as well as unpublished testing reports. The data includes chemical composition and physical properties of the raw materials, mix-designs, compressive strengths, curing and carbonation testing conditions. Natural carbonation was recorded for several years in many cases with both indoor and outdoor results. The database has been analysed to investigate the effects of binder composition and mix design, curing and preconditioning, and relative humidity on the carbonation rate. Furthermore, the accuracy of accelerated carbonation testing as well as possible correlations between compressive strength and carbonation resistance were evaluated. One approach to summerise the physical and chemical resistance in one parameter is the ratio of water content to content of carbonatable CaO (w/CaOreactive ratio). The analysis revealed that the w/CaOreactive ratio is a decisive factor for carbonation resistance, while curing and exposure conditions also influence carbonation. Under natural exposure conditions, the carbonation data exhibit significant variations. Nevertheless, probabilistic inference suggests that both accelerated and natural carbonation processes follow a square-root-of-time behavior, though accelerated and natural carbonation cannot be converted into each other without corrections. Additionally, a machine learning technique was employed to assess the influence of parameters governing the carbonation progress in concretes.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.