溶胶-凝胶法合成的掺钡铁钛酸铋过氧化物纳米粒子的结构、介电和电学特性的综合分析

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Materials Science: Materials in Electronics Pub Date : 2024-10-26 DOI:10.1007/s10854-024-13691-1
Ramzi Dhahri, Faouzia Tayari, Hasan B. Albargi, Elkenany Brens Elkenany, A. M. Al-Syadi, Navdeep Sharma, Madan Lal, Kais Iben Nassar
{"title":"溶胶-凝胶法合成的掺钡铁钛酸铋过氧化物纳米粒子的结构、介电和电学特性的综合分析","authors":"Ramzi Dhahri,&nbsp;Faouzia Tayari,&nbsp;Hasan B. Albargi,&nbsp;Elkenany Brens Elkenany,&nbsp;A. M. Al-Syadi,&nbsp;Navdeep Sharma,&nbsp;Madan Lal,&nbsp;Kais Iben Nassar","doi":"10.1007/s10854-024-13691-1","DOIUrl":null,"url":null,"abstract":"<div><p>This research aims to develop a perovskite ceramic with optimized electrical and dielectric properties for applications in energy storage, medical technologies, and electronic devices. A bismuth ferric titanate compound, Bi<sub>0.9</sub>Ba<sub>0.1</sub>Fe<sub>0.8</sub>Ti<sub>0.2</sub>O<sub>₃</sub>, doped with barium at the A-site, was successfully synthesized using the sol–gel method. X-ray diffraction at room temperature confirmed a rhombohedral structure within the R3́C space group. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) revealed an average grain size of 273 nm with uniform grain distribution and chemical composition. The study identified a clear correlation between temperature, frequency, and the material’s electrical characteristics. Impedance spectroscopy and electrical modulus analysis, conducted over a frequency range of 1 kHz to 1 MHz and temperatures between 260 and 340 K, indicated non-Debye relaxation behavior. Additionally, the material’s frequency-dependent electrical conductivity, analyzed through Jonscher’s law at various temperatures, showed that barium doping significantly enhanced conductivity and dielectric properties compared to undoped BiFeTiO₃. Consistent conduction and relaxation mechanisms were observed across the entire temperature range, highlighting the material's potential for use in capacitors and electric fields over a wide range of conditions.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of structural, dielectric, and electrical properties of sol–gel synthesized Ba-doped bismuth ferric titanate perovskite nanoparticles\",\"authors\":\"Ramzi Dhahri,&nbsp;Faouzia Tayari,&nbsp;Hasan B. Albargi,&nbsp;Elkenany Brens Elkenany,&nbsp;A. M. Al-Syadi,&nbsp;Navdeep Sharma,&nbsp;Madan Lal,&nbsp;Kais Iben Nassar\",\"doi\":\"10.1007/s10854-024-13691-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research aims to develop a perovskite ceramic with optimized electrical and dielectric properties for applications in energy storage, medical technologies, and electronic devices. A bismuth ferric titanate compound, Bi<sub>0.9</sub>Ba<sub>0.1</sub>Fe<sub>0.8</sub>Ti<sub>0.2</sub>O<sub>₃</sub>, doped with barium at the A-site, was successfully synthesized using the sol–gel method. X-ray diffraction at room temperature confirmed a rhombohedral structure within the R3́C space group. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) revealed an average grain size of 273 nm with uniform grain distribution and chemical composition. The study identified a clear correlation between temperature, frequency, and the material’s electrical characteristics. Impedance spectroscopy and electrical modulus analysis, conducted over a frequency range of 1 kHz to 1 MHz and temperatures between 260 and 340 K, indicated non-Debye relaxation behavior. Additionally, the material’s frequency-dependent electrical conductivity, analyzed through Jonscher’s law at various temperatures, showed that barium doping significantly enhanced conductivity and dielectric properties compared to undoped BiFeTiO₃. Consistent conduction and relaxation mechanisms were observed across the entire temperature range, highlighting the material's potential for use in capacitors and electric fields over a wide range of conditions.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-13691-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13691-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项研究旨在开发一种具有优化电学和介电特性的过氧化物陶瓷,以应用于能源储存、医疗技术和电子设备。采用溶胶-凝胶法成功合成了一种在 A 位掺杂钡的钛酸铋铁化合物 Bi0.9Ba0.1Fe0.8Ti0.2O₃。室温下的 X 射线衍射证实了 R3́C 空间群内的斜方体结构。扫描电子显微镜(SEM)和能量色散 X 射线分析(EDX)显示,平均晶粒大小为 273 nm,晶粒分布和化学成分均匀。研究发现,温度、频率和材料的电气特性之间存在明显的相关性。在 1 kHz 至 1 MHz 的频率范围和 260 至 340 K 的温度范围内进行的阻抗光谱和电模量分析表明了非戴贝弛豫行为。此外,通过不同温度下的琼舍尔定律分析该材料随频率变化的电导率,结果表明与未掺杂的 BiFeTiO₃ 相比,掺杂钡能显著提高电导率和介电特性。在整个温度范围内观察到了一致的传导和弛豫机制,凸显了该材料在广泛条件下用于电容器和电场的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive analysis of structural, dielectric, and electrical properties of sol–gel synthesized Ba-doped bismuth ferric titanate perovskite nanoparticles

This research aims to develop a perovskite ceramic with optimized electrical and dielectric properties for applications in energy storage, medical technologies, and electronic devices. A bismuth ferric titanate compound, Bi0.9Ba0.1Fe0.8Ti0.2O, doped with barium at the A-site, was successfully synthesized using the sol–gel method. X-ray diffraction at room temperature confirmed a rhombohedral structure within the R3́C space group. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) revealed an average grain size of 273 nm with uniform grain distribution and chemical composition. The study identified a clear correlation between temperature, frequency, and the material’s electrical characteristics. Impedance spectroscopy and electrical modulus analysis, conducted over a frequency range of 1 kHz to 1 MHz and temperatures between 260 and 340 K, indicated non-Debye relaxation behavior. Additionally, the material’s frequency-dependent electrical conductivity, analyzed through Jonscher’s law at various temperatures, showed that barium doping significantly enhanced conductivity and dielectric properties compared to undoped BiFeTiO₃. Consistent conduction and relaxation mechanisms were observed across the entire temperature range, highlighting the material's potential for use in capacitors and electric fields over a wide range of conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
期刊最新文献
An investigation on preparation and wave-absorbing properties of carbon nanotube/ferrite/polyaniline complexes Oxygen vacancy-enriched CoPi/TiO2 nanotubes/WO3 electrode for enhanced photoelectrochemical water oxidation An efficient SiO2:Ce porous nanophosphor with high color purity to fulfil the cyan emission gap of field emission displays (FEDs) Photoelectrical performance of Cu2MnSnS4/p-Si photosensor for solar energy applications Stable and environmentally benign nanofluids for direct absorption solar collectors based on natural deep eutectic solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1