退火处理对草酸辅助电沉积 CdS 薄膜提高太阳能电池性能的影响

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Materials Science: Materials in Electronics Pub Date : 2024-10-26 DOI:10.1007/s10854-024-13751-6
Abla Kamilia Madkour, Fatiha Rogti, Linda Aissani, Ahmed Hamdi, Ahlam Belgroune, Abdelhalim Zoukel
{"title":"退火处理对草酸辅助电沉积 CdS 薄膜提高太阳能电池性能的影响","authors":"Abla Kamilia Madkour,&nbsp;Fatiha Rogti,&nbsp;Linda Aissani,&nbsp;Ahmed Hamdi,&nbsp;Ahlam Belgroune,&nbsp;Abdelhalim Zoukel","doi":"10.1007/s10854-024-13751-6","DOIUrl":null,"url":null,"abstract":"<div><p>CdS thin films have been successfully electrodeposited by introducing oxalic acid in the electrolytic solution as a novel complexing agent to prevent sulfide precipitation. The CdS films were grown on an FTO/glass substrate at − 0.890 V for 10 min and then annealed at 120 °C and 400 °C, respectively, in air. X-ray diffraction revealed that the CdS films have mixed hexagonal and cubic phases with (311) cubic-CdS preferred orientation. Scanning electron microscopy (SEM) results illustrated a transition from compact grains with more spherical precipitations on the surface at 120 °C to denser and homogeneous structure with a large crystallite size at 400 °C. The energy dispersive spectroscopy (EDS) revealed a decrease in the S content and an under-stoichiometric composition of CdS film at 400 °C. The band gap value decreased from 2.47 to 2.24 eV as the annealing temperature increased, while optimum transmittance was obtained at 120 °C. Mott–Schottky analysis revealed n-type conductivity for both samples where the flat band potential and donor density vary with the annealing temperature from − 0.99 to − 1.02 V and from 3.9 × 10<sup>20</sup> to 1.1 × 10<sup>21</sup> cm<sup>−3</sup>, respectively. The electrochemical impedance studies affirmed that the electrochemical process is under kinetic control and demonstrated lower <i>R</i><sub>CT</sub> at 400 °C. PEC measurements showed enhancement in the <i>V</i><sub>OC</sub> and <i>J</i><sub>SC</sub> at 400 °C, indicating improved sensitivity and efficiency for photodetection. The slow decay of dark and photocurrent was attributed to defects and local potential fluctuations within the films. These findings highlight the effectiveness of using oxalic acid in the deposition process of CdS thin films making them suitable for solar cell applications.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-024-13751-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of annealing treatment on oxalic acid-assisted electrodeposited CdS thin films for enhanced solar cell performance\",\"authors\":\"Abla Kamilia Madkour,&nbsp;Fatiha Rogti,&nbsp;Linda Aissani,&nbsp;Ahmed Hamdi,&nbsp;Ahlam Belgroune,&nbsp;Abdelhalim Zoukel\",\"doi\":\"10.1007/s10854-024-13751-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CdS thin films have been successfully electrodeposited by introducing oxalic acid in the electrolytic solution as a novel complexing agent to prevent sulfide precipitation. The CdS films were grown on an FTO/glass substrate at − 0.890 V for 10 min and then annealed at 120 °C and 400 °C, respectively, in air. X-ray diffraction revealed that the CdS films have mixed hexagonal and cubic phases with (311) cubic-CdS preferred orientation. Scanning electron microscopy (SEM) results illustrated a transition from compact grains with more spherical precipitations on the surface at 120 °C to denser and homogeneous structure with a large crystallite size at 400 °C. The energy dispersive spectroscopy (EDS) revealed a decrease in the S content and an under-stoichiometric composition of CdS film at 400 °C. The band gap value decreased from 2.47 to 2.24 eV as the annealing temperature increased, while optimum transmittance was obtained at 120 °C. Mott–Schottky analysis revealed n-type conductivity for both samples where the flat band potential and donor density vary with the annealing temperature from − 0.99 to − 1.02 V and from 3.9 × 10<sup>20</sup> to 1.1 × 10<sup>21</sup> cm<sup>−3</sup>, respectively. The electrochemical impedance studies affirmed that the electrochemical process is under kinetic control and demonstrated lower <i>R</i><sub>CT</sub> at 400 °C. PEC measurements showed enhancement in the <i>V</i><sub>OC</sub> and <i>J</i><sub>SC</sub> at 400 °C, indicating improved sensitivity and efficiency for photodetection. The slow decay of dark and photocurrent was attributed to defects and local potential fluctuations within the films. These findings highlight the effectiveness of using oxalic acid in the deposition process of CdS thin films making them suitable for solar cell applications.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10854-024-13751-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-13751-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13751-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

通过在电解溶液中引入草酸作为防止硫化物沉淀的新型络合剂,成功电沉积出了 CdS 薄膜。CdS 薄膜在 - 0.890 V 下于 FTO/ 玻璃基底上生长 10 分钟,然后分别在 120 °C 和 400 °C 的空气中退火。X 射线衍射显示,CdS 薄膜具有六方和立方混合相,(311) 立方-CdS 优先取向。扫描电子显微镜(SEM)结果表明,在 120 ℃ 时,晶粒紧密,表面有较多球形沉淀,而在 400 ℃ 时,晶粒更加致密,结构更加均匀,晶粒尺寸较大。能量色散光谱(EDS)显示,在 400 ℃ 时,CdS 薄膜的 S 含量下降,并出现了化学计量不足的现象。随着退火温度的升高,带隙值从 2.47 eV 降至 2.24 eV,而最佳透射率则在 120 °C 时达到。莫特-肖特基分析表明,这两种样品都具有 n 型导电性,其平带电位和供体密度随退火温度的变化而变化,分别从 - 0.99 V 到 - 1.02 V,以及从 3.9 × 1020 到 1.1 × 1021 cm-3。电化学阻抗研究证实了电化学过程是在动力学控制下进行的,并表明在 400 °C 时 RCT 较低。PEC 测量显示,400 ℃ 时 VOC 和 JSC 有所提高,这表明光检测的灵敏度和效率有所提高。暗电流和光电流的缓慢衰减归因于薄膜内部的缺陷和局部电位波动。这些发现凸显了在 CdS 薄膜沉积过程中使用草酸的有效性,使其适用于太阳能电池应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of annealing treatment on oxalic acid-assisted electrodeposited CdS thin films for enhanced solar cell performance

CdS thin films have been successfully electrodeposited by introducing oxalic acid in the electrolytic solution as a novel complexing agent to prevent sulfide precipitation. The CdS films were grown on an FTO/glass substrate at − 0.890 V for 10 min and then annealed at 120 °C and 400 °C, respectively, in air. X-ray diffraction revealed that the CdS films have mixed hexagonal and cubic phases with (311) cubic-CdS preferred orientation. Scanning electron microscopy (SEM) results illustrated a transition from compact grains with more spherical precipitations on the surface at 120 °C to denser and homogeneous structure with a large crystallite size at 400 °C. The energy dispersive spectroscopy (EDS) revealed a decrease in the S content and an under-stoichiometric composition of CdS film at 400 °C. The band gap value decreased from 2.47 to 2.24 eV as the annealing temperature increased, while optimum transmittance was obtained at 120 °C. Mott–Schottky analysis revealed n-type conductivity for both samples where the flat band potential and donor density vary with the annealing temperature from − 0.99 to − 1.02 V and from 3.9 × 1020 to 1.1 × 1021 cm−3, respectively. The electrochemical impedance studies affirmed that the electrochemical process is under kinetic control and demonstrated lower RCT at 400 °C. PEC measurements showed enhancement in the VOC and JSC at 400 °C, indicating improved sensitivity and efficiency for photodetection. The slow decay of dark and photocurrent was attributed to defects and local potential fluctuations within the films. These findings highlight the effectiveness of using oxalic acid in the deposition process of CdS thin films making them suitable for solar cell applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
期刊最新文献
An investigation on preparation and wave-absorbing properties of carbon nanotube/ferrite/polyaniline complexes Oxygen vacancy-enriched CoPi/TiO2 nanotubes/WO3 electrode for enhanced photoelectrochemical water oxidation An efficient SiO2:Ce porous nanophosphor with high color purity to fulfil the cyan emission gap of field emission displays (FEDs) Photoelectrical performance of Cu2MnSnS4/p-Si photosensor for solar energy applications Stable and environmentally benign nanofluids for direct absorption solar collectors based on natural deep eutectic solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1