{"title":"重金属产生的活性氧的作用:对鱼类反应性的影响以及水生环境中抗生素耐药菌的防御机制","authors":"Hyo Jik Yoon, Seung Hoon Shin, Jong Hyeon Yoon","doi":"10.1007/s11270-024-07596-2","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive oxygen species (ROS) frequently detected in water systems require thorough investigation due to their widespread occurrence and potential health risks. This study sought to clarify the impact of ROS on zebrafish—a widely-used model organism in aquatic toxicology—and antibiotic-resistant bacteria. We explored how ROS exposure affects zebrafish brain activity, uncovering a notable increase in abnormal cognitive function, which points to possible neurological disruption. Moreover, the elevated ROS production, especially from heavy metals in natural water systems, induces 'oxidative stress,' which not only challenges antibiotic-resistant bacteria but also promotes biofilm formation and facilitates plasmid transfer. Unlike previous studies that primarily focused on heavy metal toxicity, our research highlights the role of free radical generation from metal-environment interactions. The development of innovative toxicity assessment models is imperative for accurately evaluating the ecological risks of these contaminants. This study emphasizes the critical need to understand the dual impact of ROS on zebrafish and antibiotic-resistant bacteria, guiding the development of strategies to mitigate their ecological and public health consequences in aquatic ecosystems.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Reactive Oxygen Species from Heavy Metal: Effect on reactivity of Fish and Defensive Mechanism of Antibiotic Resistant Bacteria in Aquatic Environment\",\"authors\":\"Hyo Jik Yoon, Seung Hoon Shin, Jong Hyeon Yoon\",\"doi\":\"10.1007/s11270-024-07596-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reactive oxygen species (ROS) frequently detected in water systems require thorough investigation due to their widespread occurrence and potential health risks. This study sought to clarify the impact of ROS on zebrafish—a widely-used model organism in aquatic toxicology—and antibiotic-resistant bacteria. We explored how ROS exposure affects zebrafish brain activity, uncovering a notable increase in abnormal cognitive function, which points to possible neurological disruption. Moreover, the elevated ROS production, especially from heavy metals in natural water systems, induces 'oxidative stress,' which not only challenges antibiotic-resistant bacteria but also promotes biofilm formation and facilitates plasmid transfer. Unlike previous studies that primarily focused on heavy metal toxicity, our research highlights the role of free radical generation from metal-environment interactions. The development of innovative toxicity assessment models is imperative for accurately evaluating the ecological risks of these contaminants. This study emphasizes the critical need to understand the dual impact of ROS on zebrafish and antibiotic-resistant bacteria, guiding the development of strategies to mitigate their ecological and public health consequences in aquatic ecosystems.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07596-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07596-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The Role of Reactive Oxygen Species from Heavy Metal: Effect on reactivity of Fish and Defensive Mechanism of Antibiotic Resistant Bacteria in Aquatic Environment
Reactive oxygen species (ROS) frequently detected in water systems require thorough investigation due to their widespread occurrence and potential health risks. This study sought to clarify the impact of ROS on zebrafish—a widely-used model organism in aquatic toxicology—and antibiotic-resistant bacteria. We explored how ROS exposure affects zebrafish brain activity, uncovering a notable increase in abnormal cognitive function, which points to possible neurological disruption. Moreover, the elevated ROS production, especially from heavy metals in natural water systems, induces 'oxidative stress,' which not only challenges antibiotic-resistant bacteria but also promotes biofilm formation and facilitates plasmid transfer. Unlike previous studies that primarily focused on heavy metal toxicity, our research highlights the role of free radical generation from metal-environment interactions. The development of innovative toxicity assessment models is imperative for accurately evaluating the ecological risks of these contaminants. This study emphasizes the critical need to understand the dual impact of ROS on zebrafish and antibiotic-resistant bacteria, guiding the development of strategies to mitigate their ecological and public health consequences in aquatic ecosystems.