Yang Liu, Runhan Liu, Jiawei Dong, Xue Xia, Haoying Yang, Sijun Wei, Linlin Fan, Mengke Fang, Yan Zou, Meng Zheng, Kam W. Leong, Bingyang Shi
{"title":"通过纳米粒子的细胞贩运实现有针对性的蛋白质降解","authors":"Yang Liu, Runhan Liu, Jiawei Dong, Xue Xia, Haoying Yang, Sijun Wei, Linlin Fan, Mengke Fang, Yan Zou, Meng Zheng, Kam W. Leong, Bingyang Shi","doi":"10.1038/s41565-024-01801-3","DOIUrl":null,"url":null,"abstract":"<p>Strategies that selectively bind proteins of interest and target them to the intracellular protein recycling machinery for targeted protein degradation have recently emerged as powerful tools for undruggable targets in biomedical research and the pharmaceutical industry. However, targeting any new protein of interest with current degradation tools requires a laborious case-by-case design for different diseases and cell types, especially for extracellular targets. Here we observe that nanoparticles can mediate specific receptor-independent internalization of a bound protein and further develop a general strategy for degradation of extracellular proteins of interest by making full use of clinically approved components. This extremely flexible strategy aids in targeted protein degradation tool development and provides knowledge for targeted drug therapies and nanomedicine design.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"35 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted protein degradation via cellular trafficking of nanoparticles\",\"authors\":\"Yang Liu, Runhan Liu, Jiawei Dong, Xue Xia, Haoying Yang, Sijun Wei, Linlin Fan, Mengke Fang, Yan Zou, Meng Zheng, Kam W. Leong, Bingyang Shi\",\"doi\":\"10.1038/s41565-024-01801-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Strategies that selectively bind proteins of interest and target them to the intracellular protein recycling machinery for targeted protein degradation have recently emerged as powerful tools for undruggable targets in biomedical research and the pharmaceutical industry. However, targeting any new protein of interest with current degradation tools requires a laborious case-by-case design for different diseases and cell types, especially for extracellular targets. Here we observe that nanoparticles can mediate specific receptor-independent internalization of a bound protein and further develop a general strategy for degradation of extracellular proteins of interest by making full use of clinically approved components. This extremely flexible strategy aids in targeted protein degradation tool development and provides knowledge for targeted drug therapies and nanomedicine design.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-024-01801-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01801-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Targeted protein degradation via cellular trafficking of nanoparticles
Strategies that selectively bind proteins of interest and target them to the intracellular protein recycling machinery for targeted protein degradation have recently emerged as powerful tools for undruggable targets in biomedical research and the pharmaceutical industry. However, targeting any new protein of interest with current degradation tools requires a laborious case-by-case design for different diseases and cell types, especially for extracellular targets. Here we observe that nanoparticles can mediate specific receptor-independent internalization of a bound protein and further develop a general strategy for degradation of extracellular proteins of interest by making full use of clinically approved components. This extremely flexible strategy aids in targeted protein degradation tool development and provides knowledge for targeted drug therapies and nanomedicine design.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.