{"title":"针对 SARS-CoV-2 临床药物的计算评估:预见分子机制和强效 Mpro 抑制剂。","authors":"Saroj Kumar Panda, Pratyush Pani, Parth Sarthi Sen Gupta, Nimai Charan Mahanandia, Malay Kumar Rana","doi":"10.1002/cphc.202400814","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of new SARS-CoV-2 variants of concern (VOC) is a propulsion for accelerated potential therapeutic discovery. SARS-CoV-2's main protease (Mpro), essential for host cell viral replication, is a pre-eminent druggable protein target. Here, we perform extensive drug re-profiling of the comprehensive Excelra database, which compiles various under-trial drug candidates for COVID-19 treatment. For mechanistic understanding, the most promising screened-out molecules with targets are subjected to molecular dynamics (MD) simulations. Post-MD analyses demonstrate Darunavir, Ponatinib, and Tomivosertib forming a stable complex with Mpro, characterized by less fluctuation of Cα atoms, smooth and stable root-mean-square deviation (RMSD), and robust contact with the active site residues. Likewise, they all have lower binding free energy with Mpro, demonstrating strong affinity. In free energy landscape profiles, the distances from His41 and Cys145 exhibit a single energy minima basin, implying their preponderance in proximity to Mpro's catalytic dyad. Overall, the computational assessment earmarks promising candidates from the Excelra database, emphasizing on carrying out exhaustive biochemical experiments along with clinical trials. The work lays the foundation for potential therapeutic interventions in treating COVID-19.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Assessment of Clinical Drugs against SARS-CoV-2: Foreseeing Molecular Mechanisms and Potent Mpro Inhibitors.\",\"authors\":\"Saroj Kumar Panda, Pratyush Pani, Parth Sarthi Sen Gupta, Nimai Charan Mahanandia, Malay Kumar Rana\",\"doi\":\"10.1002/cphc.202400814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of new SARS-CoV-2 variants of concern (VOC) is a propulsion for accelerated potential therapeutic discovery. SARS-CoV-2's main protease (Mpro), essential for host cell viral replication, is a pre-eminent druggable protein target. Here, we perform extensive drug re-profiling of the comprehensive Excelra database, which compiles various under-trial drug candidates for COVID-19 treatment. For mechanistic understanding, the most promising screened-out molecules with targets are subjected to molecular dynamics (MD) simulations. Post-MD analyses demonstrate Darunavir, Ponatinib, and Tomivosertib forming a stable complex with Mpro, characterized by less fluctuation of Cα atoms, smooth and stable root-mean-square deviation (RMSD), and robust contact with the active site residues. Likewise, they all have lower binding free energy with Mpro, demonstrating strong affinity. In free energy landscape profiles, the distances from His41 and Cys145 exhibit a single energy minima basin, implying their preponderance in proximity to Mpro's catalytic dyad. Overall, the computational assessment earmarks promising candidates from the Excelra database, emphasizing on carrying out exhaustive biochemical experiments along with clinical trials. The work lays the foundation for potential therapeutic interventions in treating COVID-19.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400814\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400814","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Computational Assessment of Clinical Drugs against SARS-CoV-2: Foreseeing Molecular Mechanisms and Potent Mpro Inhibitors.
The emergence of new SARS-CoV-2 variants of concern (VOC) is a propulsion for accelerated potential therapeutic discovery. SARS-CoV-2's main protease (Mpro), essential for host cell viral replication, is a pre-eminent druggable protein target. Here, we perform extensive drug re-profiling of the comprehensive Excelra database, which compiles various under-trial drug candidates for COVID-19 treatment. For mechanistic understanding, the most promising screened-out molecules with targets are subjected to molecular dynamics (MD) simulations. Post-MD analyses demonstrate Darunavir, Ponatinib, and Tomivosertib forming a stable complex with Mpro, characterized by less fluctuation of Cα atoms, smooth and stable root-mean-square deviation (RMSD), and robust contact with the active site residues. Likewise, they all have lower binding free energy with Mpro, demonstrating strong affinity. In free energy landscape profiles, the distances from His41 and Cys145 exhibit a single energy minima basin, implying their preponderance in proximity to Mpro's catalytic dyad. Overall, the computational assessment earmarks promising candidates from the Excelra database, emphasizing on carrying out exhaustive biochemical experiments along with clinical trials. The work lays the foundation for potential therapeutic interventions in treating COVID-19.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.