Jing Xie, Qiyao Mo, Lina Chen, Zhongyan Zhu, Xiao Liu, Guy Smagghe, Mao Ye, Shangwei Li
{"title":"水稻叶折中主要丝纤维蛋白基因成分 Fib-L 的鉴定和功能研究","authors":"Jing Xie, Qiyao Mo, Lina Chen, Zhongyan Zhu, Xiao Liu, Guy Smagghe, Mao Ye, Shangwei Li","doi":"10.1111/imb.12965","DOIUrl":null,"url":null,"abstract":"<p><p>The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a major migratory pest in rice agriculture. This pest is characterised by its larvae's ability to fold rice leaves using silk, a behaviour that culminates in the formation of a silken cocoon during the pupal stage. The fibroin light chain (CmFib-L) gene is crucial for silk production, yet its specific function in C. medinalis has reminded elusive. This study presents a comprehensive analysis of the CmFib-L gene, revealing its complete open reading frame (ORF) and expression patterns. Notably, the gene is highly expressed in the fifth-instar larvae and the silk gland, which are critical stages for silk production. Our experiments demonstrate that silencing the CmFib-L gene leads to a reduction in pupal weight, an extension of the pupal stage and a disorganised silk cocoon. Furthermore, the larval behaviour of leaf folding and spinning is significantly impaired when the expression of CmFib-L is downregulated. These findings not only show the importance of fibroin light chain in silk production but also reveal a new target gene to regulate and control the behaviour and development of C. medinalis.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and functional study of Fib-L, a major silk fibroin gene component in rice leaf folders.\",\"authors\":\"Jing Xie, Qiyao Mo, Lina Chen, Zhongyan Zhu, Xiao Liu, Guy Smagghe, Mao Ye, Shangwei Li\",\"doi\":\"10.1111/imb.12965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a major migratory pest in rice agriculture. This pest is characterised by its larvae's ability to fold rice leaves using silk, a behaviour that culminates in the formation of a silken cocoon during the pupal stage. The fibroin light chain (CmFib-L) gene is crucial for silk production, yet its specific function in C. medinalis has reminded elusive. This study presents a comprehensive analysis of the CmFib-L gene, revealing its complete open reading frame (ORF) and expression patterns. Notably, the gene is highly expressed in the fifth-instar larvae and the silk gland, which are critical stages for silk production. Our experiments demonstrate that silencing the CmFib-L gene leads to a reduction in pupal weight, an extension of the pupal stage and a disorganised silk cocoon. Furthermore, the larval behaviour of leaf folding and spinning is significantly impaired when the expression of CmFib-L is downregulated. These findings not only show the importance of fibroin light chain in silk production but also reveal a new target gene to regulate and control the behaviour and development of C. medinalis.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/imb.12965\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12965","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification and functional study of Fib-L, a major silk fibroin gene component in rice leaf folders.
The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a major migratory pest in rice agriculture. This pest is characterised by its larvae's ability to fold rice leaves using silk, a behaviour that culminates in the formation of a silken cocoon during the pupal stage. The fibroin light chain (CmFib-L) gene is crucial for silk production, yet its specific function in C. medinalis has reminded elusive. This study presents a comprehensive analysis of the CmFib-L gene, revealing its complete open reading frame (ORF) and expression patterns. Notably, the gene is highly expressed in the fifth-instar larvae and the silk gland, which are critical stages for silk production. Our experiments demonstrate that silencing the CmFib-L gene leads to a reduction in pupal weight, an extension of the pupal stage and a disorganised silk cocoon. Furthermore, the larval behaviour of leaf folding and spinning is significantly impaired when the expression of CmFib-L is downregulated. These findings not only show the importance of fibroin light chain in silk production but also reveal a new target gene to regulate and control the behaviour and development of C. medinalis.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).