利用四维血流磁共振成像区分肺动脉高压和肺静脉高压组的左肺动脉三维涡流能量学研究

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-28 DOI:10.1002/jmri.29635
Mohammed S M Elbaz, Melika Shafeghat, Benjamin H Freed, Roberto Sarnari, Zachary Zilber, Ryan Avery, Michael Markl, Bradley D Allen, James Carr
{"title":"利用四维血流磁共振成像区分肺动脉高压和肺静脉高压组的左肺动脉三维涡流能量学研究","authors":"Mohammed S M Elbaz, Melika Shafeghat, Benjamin H Freed, Roberto Sarnari, Zachary Zilber, Ryan Avery, Michael Markl, Bradley D Allen, James Carr","doi":"10.1002/jmri.29635","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pulmonary hypertension (PH) is a life-threatening. Differentiation pulmonary arterial hypertension (PAH) from pulmonary venous hypertension (PVH) is important due to distinct treatment protocols. Invasive right heart catheterization (RHC) remains the reference standard but noninvasive alternatives are needed.</p><p><strong>Purpose/hypothesis: </strong>To evaluate 4D Flow MRI-derived 3D vortex energetics in the left pulmonary artery (LPA) for distinguishing PAH from PVH.</p><p><strong>Study type: </strong>Prospective case-control.</p><p><strong>Population/subjects: </strong>Fourteen PAH patients (11 female) and 18 PVH patients (9 female) diagnosed from RHC, 23 healthy controls (9 female).</p><p><strong>Field strength/sequence: </strong>1.5 T; gradient recalled echo 4D flow and balanced steady-state free precession (bSSFP) cardiac cine sequences.</p><p><strong>Assessment: </strong>LPA 3D vortex cores were identified using the lambda2 method. Peak vortex-contained kinetic energy (vortex-KE) and viscous energy loss (vortex-EL) were computed from 4D flow MRI. Left and right ventricular (LV, RV) stroke volume (LVSV, RVSV) and ejection fraction (LVEF, RVEF) were computed from bSSFP. In PH patients, mean pulmonary artery pressure (mPAP), pulmonary capillary wedge pressure (PCWR) and pulmonary vascular resistance (PVR) were determined from RHC.</p><p><strong>Statistical tests: </strong>Mann-Whitney U test for group comparisons, Spearman's rho for correlations, logistic regression for identifying predictors of PAH vs. PVH and develop models, area under the receiver operating characteristic curve (AUC) for model performance. Significance was set at P < 0.05.</p><p><strong>Results: </strong>PAH patients showed significantly lower vortex-KE (37.14 [14.68-78.52] vs. 76.48 [51.07-120.51]) and vortex-EL (9.93 [5.69-25.70] vs. 24.22 [12.20-32.01]) than PVH patients. The combined vortex-KE and LVEF model achieved an AUC of 0.89 for differentiating PAH from PVH. Vortex-EL showed significant negative correlations with mPAP (rho = -0.43), PCWP (rho = 0.37), PVR (rho = -0.64). In the PAH group, PVR was significantly negatively correlated with LPA vortex-KE (rho = -0.73) and vortex-EL (rho = -0.71), and vortex-KE significantly correlated with RVEF (rho = 0.69), RVSV, (rho = 0.70). In the PVH group, vortex-KE (rho = 0.52), vortex-EL significantly correlated with RVSV (rho = 0.58).</p><p><strong>Data conclusion: </strong>These preliminary findings suggest that 4D flow MRI-derived LPA vortex energetics have potential to noninvasively differentiate PAH from PVH and correlate with invasive hemodynamic parameters.</p><p><strong>Evidence level: </strong>1 TECHNICAL EFFICACY: Stage 3.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Vortex-Energetics in the Left Pulmonary Artery for Differentiating Pulmonary Arterial Hypertension and Pulmonary Venous Hypertension Groups Using 4D Flow MRI.\",\"authors\":\"Mohammed S M Elbaz, Melika Shafeghat, Benjamin H Freed, Roberto Sarnari, Zachary Zilber, Ryan Avery, Michael Markl, Bradley D Allen, James Carr\",\"doi\":\"10.1002/jmri.29635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pulmonary hypertension (PH) is a life-threatening. Differentiation pulmonary arterial hypertension (PAH) from pulmonary venous hypertension (PVH) is important due to distinct treatment protocols. Invasive right heart catheterization (RHC) remains the reference standard but noninvasive alternatives are needed.</p><p><strong>Purpose/hypothesis: </strong>To evaluate 4D Flow MRI-derived 3D vortex energetics in the left pulmonary artery (LPA) for distinguishing PAH from PVH.</p><p><strong>Study type: </strong>Prospective case-control.</p><p><strong>Population/subjects: </strong>Fourteen PAH patients (11 female) and 18 PVH patients (9 female) diagnosed from RHC, 23 healthy controls (9 female).</p><p><strong>Field strength/sequence: </strong>1.5 T; gradient recalled echo 4D flow and balanced steady-state free precession (bSSFP) cardiac cine sequences.</p><p><strong>Assessment: </strong>LPA 3D vortex cores were identified using the lambda2 method. Peak vortex-contained kinetic energy (vortex-KE) and viscous energy loss (vortex-EL) were computed from 4D flow MRI. Left and right ventricular (LV, RV) stroke volume (LVSV, RVSV) and ejection fraction (LVEF, RVEF) were computed from bSSFP. In PH patients, mean pulmonary artery pressure (mPAP), pulmonary capillary wedge pressure (PCWR) and pulmonary vascular resistance (PVR) were determined from RHC.</p><p><strong>Statistical tests: </strong>Mann-Whitney U test for group comparisons, Spearman's rho for correlations, logistic regression for identifying predictors of PAH vs. PVH and develop models, area under the receiver operating characteristic curve (AUC) for model performance. Significance was set at P < 0.05.</p><p><strong>Results: </strong>PAH patients showed significantly lower vortex-KE (37.14 [14.68-78.52] vs. 76.48 [51.07-120.51]) and vortex-EL (9.93 [5.69-25.70] vs. 24.22 [12.20-32.01]) than PVH patients. The combined vortex-KE and LVEF model achieved an AUC of 0.89 for differentiating PAH from PVH. Vortex-EL showed significant negative correlations with mPAP (rho = -0.43), PCWP (rho = 0.37), PVR (rho = -0.64). In the PAH group, PVR was significantly negatively correlated with LPA vortex-KE (rho = -0.73) and vortex-EL (rho = -0.71), and vortex-KE significantly correlated with RVEF (rho = 0.69), RVSV, (rho = 0.70). In the PVH group, vortex-KE (rho = 0.52), vortex-EL significantly correlated with RVSV (rho = 0.58).</p><p><strong>Data conclusion: </strong>These preliminary findings suggest that 4D flow MRI-derived LPA vortex energetics have potential to noninvasively differentiate PAH from PVH and correlate with invasive hemodynamic parameters.</p><p><strong>Evidence level: </strong>1 TECHNICAL EFFICACY: Stage 3.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jmri.29635\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmri.29635","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

背景:肺动脉高压(PAH)是一种危及生命的疾病。由于治疗方案不同,肺动脉高压(PAH)和肺静脉高压(PVH)的鉴别非常重要。侵入性右心导管检查(RHC)仍是参考标准,但需要非侵入性的替代方法:研究类型:前瞻性病例对照:研究类型:前瞻性病例对照:14名PAH患者(11名女性)和18名PVH患者(9名女性),23名健康对照组(9名女性):场强/序列:1.5 T;梯度回顾回波 4D 血流和平衡稳态自由前序(bSSFP)心脏椎体序列:采用 lambda2 方法确定 LPA 3D 涡旋核心。通过四维血流磁共振成像计算涡旋动能峰值(vortex-KE)和粘性能量损失(vortex-EL)。左、右心室(LV、RV)搏出量(LVSV、RVSV)和射血分数(LVEF、RVEF)由 bSSFP 计算得出。PH患者的平均肺动脉压(mPAP)、肺毛细血管楔压(PCWR)和肺血管阻力(PVR)由RHC测定:曼-惠特尼 U 检验用于组间比较,Spearman's rho 用于相关性检验,Logistic 回归用于确定 PAH 与 PVH 的预测因素并建立模型,接受者操作特征曲线下面积 (AUC) 用于模型性能检验。显著性设定为 P 结果:PAH 患者的涡旋-KE(37.14 [14.68-78.52] vs. 76.48 [51.07-120.51] )和涡旋-EL(9.93 [5.69-25.70] vs. 24.22 [12.20-32.01])明显低于 PVH 患者。涡流-KE和LVEF联合模型在区分PAH和PVH方面的AUC为0.89。涡旋-EL与mPAP(rho = -0.43)、PCWP(rho = 0.37)和PVR(rho = -0.64)呈显著负相关。在 PAH 组,PVR 与 LPA 涡流-KE(rho = -0.73)和涡流-EL(rho = -0.71)呈显著负相关,涡流-KE 与 RVEF(rho = 0.69)和 RVSV(rho = 0.70)呈显著相关。在 PVH 组,涡流-KE(rho = 0.52)、涡流-EL 与 RVSV 显著相关(rho = 0.58):这些初步研究结果表明,四维血流 MRI 导出的 LPA 涡旋能量有可能无创区分 PAH 和 PVH,并与有创血流动力学参数相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Vortex-Energetics in the Left Pulmonary Artery for Differentiating Pulmonary Arterial Hypertension and Pulmonary Venous Hypertension Groups Using 4D Flow MRI.

Background: Pulmonary hypertension (PH) is a life-threatening. Differentiation pulmonary arterial hypertension (PAH) from pulmonary venous hypertension (PVH) is important due to distinct treatment protocols. Invasive right heart catheterization (RHC) remains the reference standard but noninvasive alternatives are needed.

Purpose/hypothesis: To evaluate 4D Flow MRI-derived 3D vortex energetics in the left pulmonary artery (LPA) for distinguishing PAH from PVH.

Study type: Prospective case-control.

Population/subjects: Fourteen PAH patients (11 female) and 18 PVH patients (9 female) diagnosed from RHC, 23 healthy controls (9 female).

Field strength/sequence: 1.5 T; gradient recalled echo 4D flow and balanced steady-state free precession (bSSFP) cardiac cine sequences.

Assessment: LPA 3D vortex cores were identified using the lambda2 method. Peak vortex-contained kinetic energy (vortex-KE) and viscous energy loss (vortex-EL) were computed from 4D flow MRI. Left and right ventricular (LV, RV) stroke volume (LVSV, RVSV) and ejection fraction (LVEF, RVEF) were computed from bSSFP. In PH patients, mean pulmonary artery pressure (mPAP), pulmonary capillary wedge pressure (PCWR) and pulmonary vascular resistance (PVR) were determined from RHC.

Statistical tests: Mann-Whitney U test for group comparisons, Spearman's rho for correlations, logistic regression for identifying predictors of PAH vs. PVH and develop models, area under the receiver operating characteristic curve (AUC) for model performance. Significance was set at P < 0.05.

Results: PAH patients showed significantly lower vortex-KE (37.14 [14.68-78.52] vs. 76.48 [51.07-120.51]) and vortex-EL (9.93 [5.69-25.70] vs. 24.22 [12.20-32.01]) than PVH patients. The combined vortex-KE and LVEF model achieved an AUC of 0.89 for differentiating PAH from PVH. Vortex-EL showed significant negative correlations with mPAP (rho = -0.43), PCWP (rho = 0.37), PVR (rho = -0.64). In the PAH group, PVR was significantly negatively correlated with LPA vortex-KE (rho = -0.73) and vortex-EL (rho = -0.71), and vortex-KE significantly correlated with RVEF (rho = 0.69), RVSV, (rho = 0.70). In the PVH group, vortex-KE (rho = 0.52), vortex-EL significantly correlated with RVSV (rho = 0.58).

Data conclusion: These preliminary findings suggest that 4D flow MRI-derived LPA vortex energetics have potential to noninvasively differentiate PAH from PVH and correlate with invasive hemodynamic parameters.

Evidence level: 1 TECHNICAL EFFICACY: Stage 3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1