{"title":"针对干旱和盐胁迫的 SnRK2 基因过表达的元分析。","authors":"Haixun Liu, Xian Wang, Xiaolin Zhu, Dongfang Zhang, Yizhen Wang, Tianjie Wang, Lifei Chen, Baoqiang Wang, Xiaohong Wei","doi":"10.1111/ppl.14578","DOIUrl":null,"url":null,"abstract":"<p><p>SNF1-RELATED KINASE 2 (SnRK2) plays a crucial role in plants' stress response. Although studies have reported that the overexpression of several SnRK2 family members in different plants leads to improved stress tolerance, it is difficult to elucidate the mechanisms by which SnRK2s regulate stress tolerance due to the variability of experimental variables in these studies. Therefore, we used meta-analysis to comprehensively analyze 22 parameters that can reflect drought tolerance and salinity tolerance in SnRK2s-transformed plants and to explore the effects that different experimental variables between studies have on the relevant plant parameters. The results showed that the overexpression of SnRK2s mainly improved plants' drought and salinity tolerance by reducing their osmotic stress and oxidative damage, improving photosynthesis and other biochemical and physiological processes. Out of the 22 physiological parameters, 17 and 19 were significantly affected by drought and salt stress, respectively, and 10 indicators were also significantly changed under non-stress conditions. Under salt stress, the cell membrane permeability among these parameters shows the most significant changes, increasing by 506.57% in SnRK2-overexpressing plants compared to wild type (WT). Therefore, although plants overexpressing SnRK2s respond positively to both drought and salt stress, they demonstrated greater tolerance to salt stress. In addition, among the detected regulatory variables, donor-acceptor type, promoter type, stress type, experimental medium, and duration all affected the extent of SnRK2s overexpression and affected the physiological characteristics of the transgenic plants. Also, different stress conditions (salt, drought stress) led to different degrees of transformation. These studies provide new research directions for studying crop stress tolerance and help to better explore the functions played by SnRK2s in external plant stresses.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14578"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-analysis of SnRK2 gene overexpression in response to drought and salt stress.\",\"authors\":\"Haixun Liu, Xian Wang, Xiaolin Zhu, Dongfang Zhang, Yizhen Wang, Tianjie Wang, Lifei Chen, Baoqiang Wang, Xiaohong Wei\",\"doi\":\"10.1111/ppl.14578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SNF1-RELATED KINASE 2 (SnRK2) plays a crucial role in plants' stress response. Although studies have reported that the overexpression of several SnRK2 family members in different plants leads to improved stress tolerance, it is difficult to elucidate the mechanisms by which SnRK2s regulate stress tolerance due to the variability of experimental variables in these studies. Therefore, we used meta-analysis to comprehensively analyze 22 parameters that can reflect drought tolerance and salinity tolerance in SnRK2s-transformed plants and to explore the effects that different experimental variables between studies have on the relevant plant parameters. The results showed that the overexpression of SnRK2s mainly improved plants' drought and salinity tolerance by reducing their osmotic stress and oxidative damage, improving photosynthesis and other biochemical and physiological processes. Out of the 22 physiological parameters, 17 and 19 were significantly affected by drought and salt stress, respectively, and 10 indicators were also significantly changed under non-stress conditions. Under salt stress, the cell membrane permeability among these parameters shows the most significant changes, increasing by 506.57% in SnRK2-overexpressing plants compared to wild type (WT). Therefore, although plants overexpressing SnRK2s respond positively to both drought and salt stress, they demonstrated greater tolerance to salt stress. In addition, among the detected regulatory variables, donor-acceptor type, promoter type, stress type, experimental medium, and duration all affected the extent of SnRK2s overexpression and affected the physiological characteristics of the transgenic plants. Also, different stress conditions (salt, drought stress) led to different degrees of transformation. These studies provide new research directions for studying crop stress tolerance and help to better explore the functions played by SnRK2s in external plant stresses.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"176 6\",\"pages\":\"e14578\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14578\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14578","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Meta-analysis of SnRK2 gene overexpression in response to drought and salt stress.
SNF1-RELATED KINASE 2 (SnRK2) plays a crucial role in plants' stress response. Although studies have reported that the overexpression of several SnRK2 family members in different plants leads to improved stress tolerance, it is difficult to elucidate the mechanisms by which SnRK2s regulate stress tolerance due to the variability of experimental variables in these studies. Therefore, we used meta-analysis to comprehensively analyze 22 parameters that can reflect drought tolerance and salinity tolerance in SnRK2s-transformed plants and to explore the effects that different experimental variables between studies have on the relevant plant parameters. The results showed that the overexpression of SnRK2s mainly improved plants' drought and salinity tolerance by reducing their osmotic stress and oxidative damage, improving photosynthesis and other biochemical and physiological processes. Out of the 22 physiological parameters, 17 and 19 were significantly affected by drought and salt stress, respectively, and 10 indicators were also significantly changed under non-stress conditions. Under salt stress, the cell membrane permeability among these parameters shows the most significant changes, increasing by 506.57% in SnRK2-overexpressing plants compared to wild type (WT). Therefore, although plants overexpressing SnRK2s respond positively to both drought and salt stress, they demonstrated greater tolerance to salt stress. In addition, among the detected regulatory variables, donor-acceptor type, promoter type, stress type, experimental medium, and duration all affected the extent of SnRK2s overexpression and affected the physiological characteristics of the transgenic plants. Also, different stress conditions (salt, drought stress) led to different degrees of transformation. These studies provide new research directions for studying crop stress tolerance and help to better explore the functions played by SnRK2s in external plant stresses.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.