Judith J M Rijnhart, Matthew J Valente, David P MacKinnon
{"title":"当结果是二元时,为什么不能使用系数差法估计中介效应?","authors":"Judith J M Rijnhart, Matthew J Valente, David P MacKinnon","doi":"10.1080/00273171.2024.2418515","DOIUrl":null,"url":null,"abstract":"<p><p>Despite previous warnings against the use of the difference-in-coefficients method for estimating the indirect effect when the outcome in the mediation model is binary, the difference-in-coefficients method remains readily used in a variety of fields. The continued use of this method is presumably because of the lack of awareness that this method conflates the indirect effect estimate and non-collapsibility. In this paper, we aim to demonstrate the problems associated with the difference-in-coefficients method for estimating indirect effects for mediation models with binary outcomes. We provide a formula that decomposes the difference-in-coefficients estimate into (1) an estimate of non-collapsibility, and (2) an indirect effect estimate. We use a simulation study and an empirical data example to illustrate the impact of non-collapsibility on the difference-in-coefficients estimate of the indirect effect. Further, we demonstrate the application of several alternative methods for estimating the indirect effect, including the product-of-coefficients method and regression-based causal mediation analysis. The results emphasize the importance of choosing a method for estimating the indirect effect that is not affected by non-collapsibility.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why You Should Not Estimate Mediated Effects Using the Difference-in-Coefficients Method When the Outcome is Binary.\",\"authors\":\"Judith J M Rijnhart, Matthew J Valente, David P MacKinnon\",\"doi\":\"10.1080/00273171.2024.2418515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite previous warnings against the use of the difference-in-coefficients method for estimating the indirect effect when the outcome in the mediation model is binary, the difference-in-coefficients method remains readily used in a variety of fields. The continued use of this method is presumably because of the lack of awareness that this method conflates the indirect effect estimate and non-collapsibility. In this paper, we aim to demonstrate the problems associated with the difference-in-coefficients method for estimating indirect effects for mediation models with binary outcomes. We provide a formula that decomposes the difference-in-coefficients estimate into (1) an estimate of non-collapsibility, and (2) an indirect effect estimate. We use a simulation study and an empirical data example to illustrate the impact of non-collapsibility on the difference-in-coefficients estimate of the indirect effect. Further, we demonstrate the application of several alternative methods for estimating the indirect effect, including the product-of-coefficients method and regression-based causal mediation analysis. The results emphasize the importance of choosing a method for estimating the indirect effect that is not affected by non-collapsibility.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2024.2418515\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2418515","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Why You Should Not Estimate Mediated Effects Using the Difference-in-Coefficients Method When the Outcome is Binary.
Despite previous warnings against the use of the difference-in-coefficients method for estimating the indirect effect when the outcome in the mediation model is binary, the difference-in-coefficients method remains readily used in a variety of fields. The continued use of this method is presumably because of the lack of awareness that this method conflates the indirect effect estimate and non-collapsibility. In this paper, we aim to demonstrate the problems associated with the difference-in-coefficients method for estimating indirect effects for mediation models with binary outcomes. We provide a formula that decomposes the difference-in-coefficients estimate into (1) an estimate of non-collapsibility, and (2) an indirect effect estimate. We use a simulation study and an empirical data example to illustrate the impact of non-collapsibility on the difference-in-coefficients estimate of the indirect effect. Further, we demonstrate the application of several alternative methods for estimating the indirect effect, including the product-of-coefficients method and regression-based causal mediation analysis. The results emphasize the importance of choosing a method for estimating the indirect effect that is not affected by non-collapsibility.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.