A. S. Shatrov, V. N. Kokarev, M. I. Petrzhik, S. K. Mukanov
{"title":"铝合金等离子电解氧化工艺模式对保护性氧化物陶瓷涂层结构和性能的影响","authors":"A. S. Shatrov, V. N. Kokarev, M. I. Petrzhik, S. K. Mukanov","doi":"10.3103/S1068375524700170","DOIUrl":null,"url":null,"abstract":"<p>The results from the studies into electrical modes of the high-frequency, high-voltage plasma electrolytic oxidation (PEO) on the properties of the formed protective coatings on the B95 T1 and D16ch T aluminum alloys are presented. The control of the PEO process was carried out by changing the amplitude values of anode and cathode voltage pulses. The local mechanical characteristics and the structure of the PEO coatings were studied using instrumented indentation and scanning electron microscopy. As a result of the studies, optimal modes of the PEO process were determined: potentiodynamic modes with a smooth decrease in the amplitude of anode voltage pulses at a speed of 5 V/min and a smooth increase in the amplitude of cathode voltage pulses at a speed of 1 V/min. The coatings formed in the optimal modes of the PEO were characterized by a reduced number of defects (microcracks, craters, pores) and high values of hardness of 27.5–27.8 GPa and elastic modulus of 286–309 GPa averaged over their thickness. These characteristics turned out to be higher by 33–45 and 15–30%, respectively, compared with a hardness and elastic modulus of the coatings formed in other studied PEO modes.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 5","pages":"659 - 665"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Process Modes of Plasma Electrolytic Oxidation of Aluminum Alloys on the Structure and Properties of Protective Oxide-Ceramic Coatings\",\"authors\":\"A. S. Shatrov, V. N. Kokarev, M. I. Petrzhik, S. K. Mukanov\",\"doi\":\"10.3103/S1068375524700170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results from the studies into electrical modes of the high-frequency, high-voltage plasma electrolytic oxidation (PEO) on the properties of the formed protective coatings on the B95 T1 and D16ch T aluminum alloys are presented. The control of the PEO process was carried out by changing the amplitude values of anode and cathode voltage pulses. The local mechanical characteristics and the structure of the PEO coatings were studied using instrumented indentation and scanning electron microscopy. As a result of the studies, optimal modes of the PEO process were determined: potentiodynamic modes with a smooth decrease in the amplitude of anode voltage pulses at a speed of 5 V/min and a smooth increase in the amplitude of cathode voltage pulses at a speed of 1 V/min. The coatings formed in the optimal modes of the PEO were characterized by a reduced number of defects (microcracks, craters, pores) and high values of hardness of 27.5–27.8 GPa and elastic modulus of 286–309 GPa averaged over their thickness. These characteristics turned out to be higher by 33–45 and 15–30%, respectively, compared with a hardness and elastic modulus of the coatings formed in other studied PEO modes.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 5\",\"pages\":\"659 - 665\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524700170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524700170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Influence of Process Modes of Plasma Electrolytic Oxidation of Aluminum Alloys on the Structure and Properties of Protective Oxide-Ceramic Coatings
The results from the studies into electrical modes of the high-frequency, high-voltage plasma electrolytic oxidation (PEO) on the properties of the formed protective coatings on the B95 T1 and D16ch T aluminum alloys are presented. The control of the PEO process was carried out by changing the amplitude values of anode and cathode voltage pulses. The local mechanical characteristics and the structure of the PEO coatings were studied using instrumented indentation and scanning electron microscopy. As a result of the studies, optimal modes of the PEO process were determined: potentiodynamic modes with a smooth decrease in the amplitude of anode voltage pulses at a speed of 5 V/min and a smooth increase in the amplitude of cathode voltage pulses at a speed of 1 V/min. The coatings formed in the optimal modes of the PEO were characterized by a reduced number of defects (microcracks, craters, pores) and high values of hardness of 27.5–27.8 GPa and elastic modulus of 286–309 GPa averaged over their thickness. These characteristics turned out to be higher by 33–45 and 15–30%, respectively, compared with a hardness and elastic modulus of the coatings formed in other studied PEO modes.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.