E. I. Zamulaeva, A. E. Kudryashov, Ph. V. Kiryukhantsev-Korneev, E. A. Bashkirov, S. K. Mukanov, Yu. S. Pogozhev, E. A. Levashov
{"title":"电火花沉积和大功率脉冲磁控溅射产生的保护性异相涂层","authors":"E. I. Zamulaeva, A. E. Kudryashov, Ph. V. Kiryukhantsev-Korneev, E. A. Bashkirov, S. K. Mukanov, Yu. S. Pogozhev, E. A. Levashov","doi":"10.3103/S1068375524700182","DOIUrl":null,"url":null,"abstract":"<p>In order to increase the service life of critical products made of refractory metals, the most effective is the use of protective coatings based on oxidation-resistant ceramic materials. Using an electrode/target made of heterophase HfSi<sub>2</sub>–MoSi<sub>2</sub>–HfB<sub>2</sub> ceramics by electrospark deposition (ESD), high-power impulse magnetron sputtering (HIPIMS) technologies, as well as the combined ESD + HIPIMS technology, coatings were deposited onto molybdenum substrate (MCh-1 brand). Electrode materials and coatings were studied by the X-ray diffraction, the glow discharge optical emission spectroscopy, the X-ray spectral microanalysis, and the scanning electron microscopy. Combined ESD + HIPIMS technology made it possible to create a hard layer of oxidation-resistant ceramics on the surface of the substrate, which does not produce through cracks inherent in ESD coatings.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 4","pages":"607 - 617"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Heterophase Coatings Produced by Electrospark Deposition and High-Power Impulse Magnetron Sputtering\",\"authors\":\"E. I. Zamulaeva, A. E. Kudryashov, Ph. V. Kiryukhantsev-Korneev, E. A. Bashkirov, S. K. Mukanov, Yu. S. Pogozhev, E. A. Levashov\",\"doi\":\"10.3103/S1068375524700182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to increase the service life of critical products made of refractory metals, the most effective is the use of protective coatings based on oxidation-resistant ceramic materials. Using an electrode/target made of heterophase HfSi<sub>2</sub>–MoSi<sub>2</sub>–HfB<sub>2</sub> ceramics by electrospark deposition (ESD), high-power impulse magnetron sputtering (HIPIMS) technologies, as well as the combined ESD + HIPIMS technology, coatings were deposited onto molybdenum substrate (MCh-1 brand). Electrode materials and coatings were studied by the X-ray diffraction, the glow discharge optical emission spectroscopy, the X-ray spectral microanalysis, and the scanning electron microscopy. Combined ESD + HIPIMS technology made it possible to create a hard layer of oxidation-resistant ceramics on the surface of the substrate, which does not produce through cracks inherent in ESD coatings.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 4\",\"pages\":\"607 - 617\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524700182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524700182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Protective Heterophase Coatings Produced by Electrospark Deposition and High-Power Impulse Magnetron Sputtering
In order to increase the service life of critical products made of refractory metals, the most effective is the use of protective coatings based on oxidation-resistant ceramic materials. Using an electrode/target made of heterophase HfSi2–MoSi2–HfB2 ceramics by electrospark deposition (ESD), high-power impulse magnetron sputtering (HIPIMS) technologies, as well as the combined ESD + HIPIMS technology, coatings were deposited onto molybdenum substrate (MCh-1 brand). Electrode materials and coatings were studied by the X-ray diffraction, the glow discharge optical emission spectroscopy, the X-ray spectral microanalysis, and the scanning electron microscopy. Combined ESD + HIPIMS technology made it possible to create a hard layer of oxidation-resistant ceramics on the surface of the substrate, which does not produce through cracks inherent in ESD coatings.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.