Pooja Dhiman, Jayati Sharma, Mohammad Rafe Hatshan, Ayman A. Ghfar, Amit Kumar, Gaurav Sharma
{"title":"稀土离子掺杂增强了 Bi5O7I 的光催化活性,使其在可见光驱动下降解环丙沙星的效果更佳","authors":"Pooja Dhiman, Jayati Sharma, Mohammad Rafe Hatshan, Ayman A. Ghfar, Amit Kumar, Gaurav Sharma","doi":"10.1007/s11270-024-07570-y","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing the efficacy of semiconductor photocatalysts through the doping of rare-earth ions is a viable approach for regulating their behaviour. The current study employs a solvothermal method followed by calcination to produce Bi<sub>5</sub>O<sub>7</sub>I photocatalysts doped with rare earth elements (Sm, Nd, and Dy). Ciprofloxacin was used as the target pollutant for all produced catalysts. Among all, Sm-doped Bi<sub>5</sub>O<sub>7</sub>I exhibited optimal degradation efficiency against ciprofloxacin. Sm doping was identified to be responsible for increased visible light absorption and enhanced separation of light-induced carriers, leading to increased performance in photocatalysis. The Sm doped Bi<sub>5</sub>O<sub>7</sub>I also showed good adaptation to higher initial ciprofloxacin concentrations and the requisite photodegradation stability after four cycles. Furthermore, the up-conversion luminescence feature of Sm increased the catalyst's visible light usage range. The scavenging experiment identified ·O<sub>2</sub><sup>−</sup>, h<sup>+</sup>, and <sup>1</sup>O<sub>2</sub> as active chemicals in the photocatalytic degradation of ciprofloxacin. Based on this fact, a possible degradation mechanism was postulated. This work may serve as a guide for creating doped bismuth-rich halides for waste water remediation.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rare Earth Ions Doping Enhanced Photocatalytic Activity of Bi5O7I for Superior Visible Light Driven Degradation of Ciprofloxacin\",\"authors\":\"Pooja Dhiman, Jayati Sharma, Mohammad Rafe Hatshan, Ayman A. Ghfar, Amit Kumar, Gaurav Sharma\",\"doi\":\"10.1007/s11270-024-07570-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enhancing the efficacy of semiconductor photocatalysts through the doping of rare-earth ions is a viable approach for regulating their behaviour. The current study employs a solvothermal method followed by calcination to produce Bi<sub>5</sub>O<sub>7</sub>I photocatalysts doped with rare earth elements (Sm, Nd, and Dy). Ciprofloxacin was used as the target pollutant for all produced catalysts. Among all, Sm-doped Bi<sub>5</sub>O<sub>7</sub>I exhibited optimal degradation efficiency against ciprofloxacin. Sm doping was identified to be responsible for increased visible light absorption and enhanced separation of light-induced carriers, leading to increased performance in photocatalysis. The Sm doped Bi<sub>5</sub>O<sub>7</sub>I also showed good adaptation to higher initial ciprofloxacin concentrations and the requisite photodegradation stability after four cycles. Furthermore, the up-conversion luminescence feature of Sm increased the catalyst's visible light usage range. The scavenging experiment identified ·O<sub>2</sub><sup>−</sup>, h<sup>+</sup>, and <sup>1</sup>O<sub>2</sub> as active chemicals in the photocatalytic degradation of ciprofloxacin. Based on this fact, a possible degradation mechanism was postulated. This work may serve as a guide for creating doped bismuth-rich halides for waste water remediation.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07570-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07570-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Rare Earth Ions Doping Enhanced Photocatalytic Activity of Bi5O7I for Superior Visible Light Driven Degradation of Ciprofloxacin
Enhancing the efficacy of semiconductor photocatalysts through the doping of rare-earth ions is a viable approach for regulating their behaviour. The current study employs a solvothermal method followed by calcination to produce Bi5O7I photocatalysts doped with rare earth elements (Sm, Nd, and Dy). Ciprofloxacin was used as the target pollutant for all produced catalysts. Among all, Sm-doped Bi5O7I exhibited optimal degradation efficiency against ciprofloxacin. Sm doping was identified to be responsible for increased visible light absorption and enhanced separation of light-induced carriers, leading to increased performance in photocatalysis. The Sm doped Bi5O7I also showed good adaptation to higher initial ciprofloxacin concentrations and the requisite photodegradation stability after four cycles. Furthermore, the up-conversion luminescence feature of Sm increased the catalyst's visible light usage range. The scavenging experiment identified ·O2−, h+, and 1O2 as active chemicals in the photocatalytic degradation of ciprofloxacin. Based on this fact, a possible degradation mechanism was postulated. This work may serve as a guide for creating doped bismuth-rich halides for waste water remediation.