Gururaj Govindaraja, Sruthi Duraipandi, Sreekumar A.
{"title":"使用专用纳米添加剂增强共晶化合物的热性能和传热效果","authors":"Gururaj Govindaraja, Sruthi Duraipandi, Sreekumar A.","doi":"10.1002/est2.70067","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Two nanoprecursors with capping agents were incorporated in stearyl alcohol–adipic acid combination phase change material (PCM) in this study. The addition of nanomaterials made the eutectic reliable in the manner of its thermal properties like higher enthalpy, degradation point, and more compatible with the metal encapsulation materials when compared with the pristane eutectic. The importance of nano-metal oxides in parent material was shown by the reduced time frame of the PCM's thermal energy storing and releasing process for space heating applications. The specific heat capacity of both the aluminum and titanium oxide nanocomposites were greater than the eutectic, which indicates that the material can retain more energy. The thermal conductivities of base material and nanocomposite PCMs were 0.2686, 0.2815, and 0.4395 W/mK at 40°C, and the highest percentage increment of nanocomposites was seen as 9.19% and 63.62% at varied encircled temperatures. The crystal structure and chemical disintegration were evinced with the X-ray diffractometer results of the composites.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deployment of Dedicative Nanoadditives to Enhance the Thermal Behavior and Effectiveness of Heat Transfer Performance of Eutectic Compound\",\"authors\":\"Gururaj Govindaraja, Sruthi Duraipandi, Sreekumar A.\",\"doi\":\"10.1002/est2.70067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Two nanoprecursors with capping agents were incorporated in stearyl alcohol–adipic acid combination phase change material (PCM) in this study. The addition of nanomaterials made the eutectic reliable in the manner of its thermal properties like higher enthalpy, degradation point, and more compatible with the metal encapsulation materials when compared with the pristane eutectic. The importance of nano-metal oxides in parent material was shown by the reduced time frame of the PCM's thermal energy storing and releasing process for space heating applications. The specific heat capacity of both the aluminum and titanium oxide nanocomposites were greater than the eutectic, which indicates that the material can retain more energy. The thermal conductivities of base material and nanocomposite PCMs were 0.2686, 0.2815, and 0.4395 W/mK at 40°C, and the highest percentage increment of nanocomposites was seen as 9.19% and 63.62% at varied encircled temperatures. The crystal structure and chemical disintegration were evinced with the X-ray diffractometer results of the composites.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deployment of Dedicative Nanoadditives to Enhance the Thermal Behavior and Effectiveness of Heat Transfer Performance of Eutectic Compound
Two nanoprecursors with capping agents were incorporated in stearyl alcohol–adipic acid combination phase change material (PCM) in this study. The addition of nanomaterials made the eutectic reliable in the manner of its thermal properties like higher enthalpy, degradation point, and more compatible with the metal encapsulation materials when compared with the pristane eutectic. The importance of nano-metal oxides in parent material was shown by the reduced time frame of the PCM's thermal energy storing and releasing process for space heating applications. The specific heat capacity of both the aluminum and titanium oxide nanocomposites were greater than the eutectic, which indicates that the material can retain more energy. The thermal conductivities of base material and nanocomposite PCMs were 0.2686, 0.2815, and 0.4395 W/mK at 40°C, and the highest percentage increment of nanocomposites was seen as 9.19% and 63.62% at varied encircled temperatures. The crystal structure and chemical disintegration were evinced with the X-ray diffractometer results of the composites.