城市轨道交通的多类型始发站(OD)客流预测:深度学习聚类第一预测第二综合框架

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL Journal of Advanced Transportation Pub Date : 2024-10-23 DOI:10.1155/2024/6629500
Zhaocha Huang, Han Zheng, Kuan Yang
{"title":"城市轨道交通的多类型始发站(OD)客流预测:深度学习聚类第一预测第二综合框架","authors":"Zhaocha Huang,&nbsp;Han Zheng,&nbsp;Kuan Yang","doi":"10.1155/2024/6629500","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Accurately predicting origin-destination (OD) passenger flows serves as the basis for implementing efficient plans, including line planning and timetabling. However, due to the complexity and variety of OD passenger flows types, general prediction models have difficulty in capturing the features of different OD passenger flows, which in turn leads to poor prediction performance. To address this issue, we propose an integrated framework that combines clustering and prediction methods. First, an unsupervised deep learning model is devised to automatically cluster OD flow types by capturing shape characteristics. Second, three types of features are created to enhance training efficiency, including static features, time-dependent observed features, and time-dependent known features. Based on the clustering of OD passenger flow, a weighted adaptive passenger flow prediction model is developed. The study employs a temporal fusion transformers model to enable multitype OD passenger flow prediction. In the numerical experiments, the model was applied to the urban rail transit in South China, and the model clustered 15,168 OD pairs into 4 types for prediction. The findings show that this approach enhanced the prediction accuracy by 2.0%–9.6% compared to the LSTM model and by 1.6%–4.3% compared to the Graph WaveNet. Moreover, the model can accurately assess the various features for diverse types of OD flows.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6629500","citationCount":"0","resultStr":"{\"title\":\"Multitype Origin-Destination (OD) Passenger Flow Prediction for Urban Rail Transit: A Deep Learning Clustering First Predicting Second Integrated Framework\",\"authors\":\"Zhaocha Huang,&nbsp;Han Zheng,&nbsp;Kuan Yang\",\"doi\":\"10.1155/2024/6629500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Accurately predicting origin-destination (OD) passenger flows serves as the basis for implementing efficient plans, including line planning and timetabling. However, due to the complexity and variety of OD passenger flows types, general prediction models have difficulty in capturing the features of different OD passenger flows, which in turn leads to poor prediction performance. To address this issue, we propose an integrated framework that combines clustering and prediction methods. First, an unsupervised deep learning model is devised to automatically cluster OD flow types by capturing shape characteristics. Second, three types of features are created to enhance training efficiency, including static features, time-dependent observed features, and time-dependent known features. Based on the clustering of OD passenger flow, a weighted adaptive passenger flow prediction model is developed. The study employs a temporal fusion transformers model to enable multitype OD passenger flow prediction. In the numerical experiments, the model was applied to the urban rail transit in South China, and the model clustered 15,168 OD pairs into 4 types for prediction. The findings show that this approach enhanced the prediction accuracy by 2.0%–9.6% compared to the LSTM model and by 1.6%–4.3% compared to the Graph WaveNet. Moreover, the model can accurately assess the various features for diverse types of OD flows.</p>\\n </div>\",\"PeriodicalId\":50259,\"journal\":{\"name\":\"Journal of Advanced Transportation\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6629500\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6629500\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6629500","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

准确预测始发站-目的地(OD)客流是实施高效计划(包括线路规划和时刻表编制)的基础。然而,由于始发站客流类型复杂多样,一般预测模型难以捕捉不同始发站客流的特征,进而导致预测效果不佳。为解决这一问题,我们提出了一种结合聚类和预测方法的综合框架。首先,我们设计了一个无监督深度学习模型,通过捕捉形状特征来自动聚类 OD 流量类型。其次,为了提高训练效率,我们创建了三种类型的特征,包括静态特征、随时间变化的观测特征和随时间变化的已知特征。在对 OD 客流进行聚类的基础上,建立了加权自适应客流预测模型。该研究采用时间融合变换器模型来实现多类型 OD 客流预测。在数值实验中,该模型被应用于华南地区的城市轨道交通,并将 15 168 对 OD 聚类为 4 种类型进行预测。结果表明,与 LSTM 模型相比,该方法的预测准确率提高了 2.0%-9.6%,与 Graph WaveNet 相比,提高了 1.6%-4.3%。此外,该模型还能准确评估不同类型 OD 流量的各种特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multitype Origin-Destination (OD) Passenger Flow Prediction for Urban Rail Transit: A Deep Learning Clustering First Predicting Second Integrated Framework

Accurately predicting origin-destination (OD) passenger flows serves as the basis for implementing efficient plans, including line planning and timetabling. However, due to the complexity and variety of OD passenger flows types, general prediction models have difficulty in capturing the features of different OD passenger flows, which in turn leads to poor prediction performance. To address this issue, we propose an integrated framework that combines clustering and prediction methods. First, an unsupervised deep learning model is devised to automatically cluster OD flow types by capturing shape characteristics. Second, three types of features are created to enhance training efficiency, including static features, time-dependent observed features, and time-dependent known features. Based on the clustering of OD passenger flow, a weighted adaptive passenger flow prediction model is developed. The study employs a temporal fusion transformers model to enable multitype OD passenger flow prediction. In the numerical experiments, the model was applied to the urban rail transit in South China, and the model clustered 15,168 OD pairs into 4 types for prediction. The findings show that this approach enhanced the prediction accuracy by 2.0%–9.6% compared to the LSTM model and by 1.6%–4.3% compared to the Graph WaveNet. Moreover, the model can accurately assess the various features for diverse types of OD flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
期刊最新文献
Drive Risk Assessment Based on Game Theory Combinatorial Weighting—Unascertained Measure Theory Traffic Incident Duration Prediction: A Systematic Review of Techniques Energy Consumption Prediction Model for Electric Buses Considering Actual Quantifiable Features Introducing an Experimental Model of Asphalt Shear Strength Using Designed Jaws and Presentation of Shear Strength Prediction Model by Genetic Programming Method Indicators for Active Transportation in Tier II Indian Cities: A Case of Bhopal, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1