Kapil Narwal, Saeed Farsad, Roger Kempers, Paul G. O'Brien
{"title":"利用沸石进行移动传热的吸附式热能存储","authors":"Kapil Narwal, Saeed Farsad, Roger Kempers, Paul G. O'Brien","doi":"10.1002/est2.70041","DOIUrl":null,"url":null,"abstract":"<p>The utilization of the water–zeolite pair as an adsorbate–adsorbent system has garnered significant attention in the realm of thermochemical energy storage, offering great potential for various applications. Despite promising results in laboratory settings, widespread implementation of this technology has yet to be realized. Recent advancements in mobile thermal energy storage (m-TES) employing thermochemical materials have opened new avenues for enhancing the practicality and cost-effectiveness of solar thermal energy harnessing and waste heat recovery. This experimental study investigates the feasibility of storing thermal energy in zeolites, charged externally to the heat recovery reactor, and discusses the potential applications of externally charged zeolites for m-TES over short distances, shedding light on their practicality and significance in advancing the field of mobile thermal energy storage. Our findings reveal that zeolites charged at 200°C and subsequently stored outside the discharging unit exhibit an impressive energy storage density (ESD) exceeding 110 kWh<sub>th</sub>/m<sup>3</sup> under conditions of 0.45 m/s air velocity and 60% relative humidity during zeolite discharging. These ESD values are comparable to previously reported figures in the literature. Moreover, ESD values of 30.6 kWh<sub>th</sub>/m<sup>3</sup> were achieved by charging zeolite beads contained within packed transportable tubes constructed from stainless-steel mesh.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70041","citationCount":"0","resultStr":"{\"title\":\"Adsorption-Based Thermal Energy Storage Using Zeolites for Mobile Heat Transfer\",\"authors\":\"Kapil Narwal, Saeed Farsad, Roger Kempers, Paul G. O'Brien\",\"doi\":\"10.1002/est2.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The utilization of the water–zeolite pair as an adsorbate–adsorbent system has garnered significant attention in the realm of thermochemical energy storage, offering great potential for various applications. Despite promising results in laboratory settings, widespread implementation of this technology has yet to be realized. Recent advancements in mobile thermal energy storage (m-TES) employing thermochemical materials have opened new avenues for enhancing the practicality and cost-effectiveness of solar thermal energy harnessing and waste heat recovery. This experimental study investigates the feasibility of storing thermal energy in zeolites, charged externally to the heat recovery reactor, and discusses the potential applications of externally charged zeolites for m-TES over short distances, shedding light on their practicality and significance in advancing the field of mobile thermal energy storage. Our findings reveal that zeolites charged at 200°C and subsequently stored outside the discharging unit exhibit an impressive energy storage density (ESD) exceeding 110 kWh<sub>th</sub>/m<sup>3</sup> under conditions of 0.45 m/s air velocity and 60% relative humidity during zeolite discharging. These ESD values are comparable to previously reported figures in the literature. Moreover, ESD values of 30.6 kWh<sub>th</sub>/m<sup>3</sup> were achieved by charging zeolite beads contained within packed transportable tubes constructed from stainless-steel mesh.</p>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adsorption-Based Thermal Energy Storage Using Zeolites for Mobile Heat Transfer
The utilization of the water–zeolite pair as an adsorbate–adsorbent system has garnered significant attention in the realm of thermochemical energy storage, offering great potential for various applications. Despite promising results in laboratory settings, widespread implementation of this technology has yet to be realized. Recent advancements in mobile thermal energy storage (m-TES) employing thermochemical materials have opened new avenues for enhancing the practicality and cost-effectiveness of solar thermal energy harnessing and waste heat recovery. This experimental study investigates the feasibility of storing thermal energy in zeolites, charged externally to the heat recovery reactor, and discusses the potential applications of externally charged zeolites for m-TES over short distances, shedding light on their practicality and significance in advancing the field of mobile thermal energy storage. Our findings reveal that zeolites charged at 200°C and subsequently stored outside the discharging unit exhibit an impressive energy storage density (ESD) exceeding 110 kWhth/m3 under conditions of 0.45 m/s air velocity and 60% relative humidity during zeolite discharging. These ESD values are comparable to previously reported figures in the literature. Moreover, ESD values of 30.6 kWhth/m3 were achieved by charging zeolite beads contained within packed transportable tubes constructed from stainless-steel mesh.