{"title":"用于测定欧姆触点比接触电阻率的混合 TLM-CTLM 测试结构","authors":"Pan Yue, Thanh Pham Chi, Anthony Holland","doi":"10.1002/jnm.3310","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Various test structures can be used to determine the specific contact resistivity of ohmic contacts. The transmission line model test structure and circular transmission line model test structure are the most commonly used. The analytical expressions of the former are straightforward and effectively describe the electrical behaviour of a contact, while the concentric geometry of the latter eliminates complications during fabrication. In this article, we present a hybrid test structure that combines the advantages of the transmission line and the circular transmission line models. The analytical expressions of the new structure are presented, and its finite-element modelling is undertaken. The effect of contact geometry on this test structure is also discussed. Using the presented test structure, determining contact parameters does not require any error corrections.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid TLM-CTLM Test Structure for Determining Specific Contact Resistivity of Ohmic Contacts\",\"authors\":\"Pan Yue, Thanh Pham Chi, Anthony Holland\",\"doi\":\"10.1002/jnm.3310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Various test structures can be used to determine the specific contact resistivity of ohmic contacts. The transmission line model test structure and circular transmission line model test structure are the most commonly used. The analytical expressions of the former are straightforward and effectively describe the electrical behaviour of a contact, while the concentric geometry of the latter eliminates complications during fabrication. In this article, we present a hybrid test structure that combines the advantages of the transmission line and the circular transmission line models. The analytical expressions of the new structure are presented, and its finite-element modelling is undertaken. The effect of contact geometry on this test structure is also discussed. Using the presented test structure, determining contact parameters does not require any error corrections.</p>\\n </div>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3310\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3310","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hybrid TLM-CTLM Test Structure for Determining Specific Contact Resistivity of Ohmic Contacts
Various test structures can be used to determine the specific contact resistivity of ohmic contacts. The transmission line model test structure and circular transmission line model test structure are the most commonly used. The analytical expressions of the former are straightforward and effectively describe the electrical behaviour of a contact, while the concentric geometry of the latter eliminates complications during fabrication. In this article, we present a hybrid test structure that combines the advantages of the transmission line and the circular transmission line models. The analytical expressions of the new structure are presented, and its finite-element modelling is undertaken. The effect of contact geometry on this test structure is also discussed. Using the presented test structure, determining contact parameters does not require any error corrections.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.