Xi-guang Li , Qiang Gao , Chun-chen Nie , Xiang-nan Zhu , Yong-qiang Zhao
{"title":"低阶细煤高效浮选的可持续战略:利用废油制备环保型复合捕收剂","authors":"Xi-guang Li , Qiang Gao , Chun-chen Nie , Xiang-nan Zhu , Yong-qiang Zhao","doi":"10.1016/j.powtec.2024.120360","DOIUrl":null,"url":null,"abstract":"<div><div>This study prepared an innovative composite collector of waste oil (WO) in kitchen waste, suitable for fine low-rank coal (LRC) flotation. It systematically investigated the potential of the composite collector to recover clean coal from fine LRC by froth flotation. The flotation mechanism of fine LRC particles could be elucidated by the combination of FTIR and XPS. The flotation results demonstrated that the WO composite collector significantly increased the yield and combustible recovery of the fine LRC flotation concentrate. Notably, as the dosage of the WO composite collector increased from 200 to 1000 g/t, the clean coal yield rose from 20.08 % to 74.60 %, while the combustible recovery improved from 24.89 % to 91.19 %. FTIR and XPS analyses indicated that the WO composite collector containing C-H/C-C groups adhered to the surface of the coal particles, which enhanced the hydrophobicity of the particles and improved the flotation efficiency.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120360"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable strategy for high-efficiency flotation of fine low-rank coal: Eco-friendly composite collector prepared from waste oil\",\"authors\":\"Xi-guang Li , Qiang Gao , Chun-chen Nie , Xiang-nan Zhu , Yong-qiang Zhao\",\"doi\":\"10.1016/j.powtec.2024.120360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study prepared an innovative composite collector of waste oil (WO) in kitchen waste, suitable for fine low-rank coal (LRC) flotation. It systematically investigated the potential of the composite collector to recover clean coal from fine LRC by froth flotation. The flotation mechanism of fine LRC particles could be elucidated by the combination of FTIR and XPS. The flotation results demonstrated that the WO composite collector significantly increased the yield and combustible recovery of the fine LRC flotation concentrate. Notably, as the dosage of the WO composite collector increased from 200 to 1000 g/t, the clean coal yield rose from 20.08 % to 74.60 %, while the combustible recovery improved from 24.89 % to 91.19 %. FTIR and XPS analyses indicated that the WO composite collector containing C-H/C-C groups adhered to the surface of the coal particles, which enhanced the hydrophobicity of the particles and improved the flotation efficiency.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"449 \",\"pages\":\"Article 120360\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024010040\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010040","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Sustainable strategy for high-efficiency flotation of fine low-rank coal: Eco-friendly composite collector prepared from waste oil
This study prepared an innovative composite collector of waste oil (WO) in kitchen waste, suitable for fine low-rank coal (LRC) flotation. It systematically investigated the potential of the composite collector to recover clean coal from fine LRC by froth flotation. The flotation mechanism of fine LRC particles could be elucidated by the combination of FTIR and XPS. The flotation results demonstrated that the WO composite collector significantly increased the yield and combustible recovery of the fine LRC flotation concentrate. Notably, as the dosage of the WO composite collector increased from 200 to 1000 g/t, the clean coal yield rose from 20.08 % to 74.60 %, while the combustible recovery improved from 24.89 % to 91.19 %. FTIR and XPS analyses indicated that the WO composite collector containing C-H/C-C groups adhered to the surface of the coal particles, which enhanced the hydrophobicity of the particles and improved the flotation efficiency.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.