Osamh S. Alshahed , Baldeep Kaur , Michael S.A. Bradley , David Armour-Chelu
{"title":"利用非线性动力学分析对气力输送进行数据驱动的系统识别和模型预测控制,优化能源消耗","authors":"Osamh S. Alshahed , Baldeep Kaur , Michael S.A. Bradley , David Armour-Chelu","doi":"10.1016/j.powtec.2024.120364","DOIUrl":null,"url":null,"abstract":"<div><div>Pneumatic conveying systems provide secure transportation of particulate material and a dust-free environment. These systems face high energy consumption, material degradation, and pipeline blockages. This research presents an innovative solution by integrating nonlinear dynamics analysis of electrostatic sensor data, including chaos and recurrence quantification analysis, sparse identification of nonlinear dynamics with control (SINDYc) and model predictive control (MPC). The Lyapunov exponent, approximate entropy and recurrence rate of electrostatic sensor data reveal the chaotic nature of gas-solid flows. MPC framework was tailored for real-time optimisation of a pneumatic conveying system. SINDYc system models were developed using data collected from an open-loop control pneumatic conveying process to conduct MPC simulations and select an appropriate model for real-time control. This research illustrates the potential of integrating nonlinear dynamics analysis, SINDYc integrated and MPC for enhanced system performance, showcased a significant reduction in energy consumption without compromising the system's efficiency or reliability.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120364"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven system identification and model predictive control of pneumatic conveying using nonlinear dynamics analysis for optimised energy consumption\",\"authors\":\"Osamh S. Alshahed , Baldeep Kaur , Michael S.A. Bradley , David Armour-Chelu\",\"doi\":\"10.1016/j.powtec.2024.120364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pneumatic conveying systems provide secure transportation of particulate material and a dust-free environment. These systems face high energy consumption, material degradation, and pipeline blockages. This research presents an innovative solution by integrating nonlinear dynamics analysis of electrostatic sensor data, including chaos and recurrence quantification analysis, sparse identification of nonlinear dynamics with control (SINDYc) and model predictive control (MPC). The Lyapunov exponent, approximate entropy and recurrence rate of electrostatic sensor data reveal the chaotic nature of gas-solid flows. MPC framework was tailored for real-time optimisation of a pneumatic conveying system. SINDYc system models were developed using data collected from an open-loop control pneumatic conveying process to conduct MPC simulations and select an appropriate model for real-time control. This research illustrates the potential of integrating nonlinear dynamics analysis, SINDYc integrated and MPC for enhanced system performance, showcased a significant reduction in energy consumption without compromising the system's efficiency or reliability.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"449 \",\"pages\":\"Article 120364\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024010088\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010088","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Data-driven system identification and model predictive control of pneumatic conveying using nonlinear dynamics analysis for optimised energy consumption
Pneumatic conveying systems provide secure transportation of particulate material and a dust-free environment. These systems face high energy consumption, material degradation, and pipeline blockages. This research presents an innovative solution by integrating nonlinear dynamics analysis of electrostatic sensor data, including chaos and recurrence quantification analysis, sparse identification of nonlinear dynamics with control (SINDYc) and model predictive control (MPC). The Lyapunov exponent, approximate entropy and recurrence rate of electrostatic sensor data reveal the chaotic nature of gas-solid flows. MPC framework was tailored for real-time optimisation of a pneumatic conveying system. SINDYc system models were developed using data collected from an open-loop control pneumatic conveying process to conduct MPC simulations and select an appropriate model for real-time control. This research illustrates the potential of integrating nonlinear dynamics analysis, SINDYc integrated and MPC for enhanced system performance, showcased a significant reduction in energy consumption without compromising the system's efficiency or reliability.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.