{"title":"成分对低阶煤甲烷微孔填充能力的影响","authors":"Fang Zhang , Jingyu Jiang , Chenghao Wang , Yuanping Cheng , Xiaobin Dong , Jian Wu","doi":"10.1016/j.powtec.2024.120363","DOIUrl":null,"url":null,"abstract":"<div><div>N<sub>2</sub>/CO<sub>2</sub> adsorption methods were used to measure pore characteristics of low-rank coal, and methane isothermal adsorption experiments were conducted for further evaluation. Results from N<sub>2</sub> adsorption experiments reveal that the pore size ranges from 1.03 to 3.26 nm, with pore volumes (PVs) of 0.006–0.013 cm<sup>3</sup>/g The CO<sub>2</sub> adsorption experiments reveal that the micropore size distribution is 0.479–0.548 nm, with PVs of 0.026–0.056 cm<sup>3</sup>/g. The methane isothermal adsorption experiments shows that the maximum adsorption volume is 12.82–28.68 cm<sup>3</sup>/g. The micropore filling theory developed for medium to high-rank coals shows that over 94.71 % of methane is stored in micropores, validating its applicability to low-rank coal. Through theoretical analysis and calculations, a dimensionless expression has been derived for the relationship between the micropore filling capacity of methane in low-rank coal and the content of its various components. This study offers a theoretical foundation for outburst prevention of gas in low-rank coal mining regions.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120363"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of components on methane micropore filling capacity of low-rank coal\",\"authors\":\"Fang Zhang , Jingyu Jiang , Chenghao Wang , Yuanping Cheng , Xiaobin Dong , Jian Wu\",\"doi\":\"10.1016/j.powtec.2024.120363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>N<sub>2</sub>/CO<sub>2</sub> adsorption methods were used to measure pore characteristics of low-rank coal, and methane isothermal adsorption experiments were conducted for further evaluation. Results from N<sub>2</sub> adsorption experiments reveal that the pore size ranges from 1.03 to 3.26 nm, with pore volumes (PVs) of 0.006–0.013 cm<sup>3</sup>/g The CO<sub>2</sub> adsorption experiments reveal that the micropore size distribution is 0.479–0.548 nm, with PVs of 0.026–0.056 cm<sup>3</sup>/g. The methane isothermal adsorption experiments shows that the maximum adsorption volume is 12.82–28.68 cm<sup>3</sup>/g. The micropore filling theory developed for medium to high-rank coals shows that over 94.71 % of methane is stored in micropores, validating its applicability to low-rank coal. Through theoretical analysis and calculations, a dimensionless expression has been derived for the relationship between the micropore filling capacity of methane in low-rank coal and the content of its various components. This study offers a theoretical foundation for outburst prevention of gas in low-rank coal mining regions.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"449 \",\"pages\":\"Article 120363\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024010076\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010076","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Influence of components on methane micropore filling capacity of low-rank coal
N2/CO2 adsorption methods were used to measure pore characteristics of low-rank coal, and methane isothermal adsorption experiments were conducted for further evaluation. Results from N2 adsorption experiments reveal that the pore size ranges from 1.03 to 3.26 nm, with pore volumes (PVs) of 0.006–0.013 cm3/g The CO2 adsorption experiments reveal that the micropore size distribution is 0.479–0.548 nm, with PVs of 0.026–0.056 cm3/g. The methane isothermal adsorption experiments shows that the maximum adsorption volume is 12.82–28.68 cm3/g. The micropore filling theory developed for medium to high-rank coals shows that over 94.71 % of methane is stored in micropores, validating its applicability to low-rank coal. Through theoretical analysis and calculations, a dimensionless expression has been derived for the relationship between the micropore filling capacity of methane in low-rank coal and the content of its various components. This study offers a theoretical foundation for outburst prevention of gas in low-rank coal mining regions.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.