通过严重变形层间摩擦搅拌加工和沉积后热处理改善线弧快速成型铝锌镁铜合金的材料性能

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-10-22 DOI:10.1016/j.matchar.2024.114487
{"title":"通过严重变形层间摩擦搅拌加工和沉积后热处理改善线弧快速成型铝锌镁铜合金的材料性能","authors":"","doi":"10.1016/j.matchar.2024.114487","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, Al-Zn-Mg-Cu alloys were prepared by wire arc additive manufacturing (WAAM) combined with interlayer friction stir processing (IFSP). To enhance the FSP region, an improved stirring pin was designed to broaden the stir zone effectively. Moreover, the effects of typical T6 and T73 heat treatments on the microstructure and mechanical properties of as-deposited (AS) specimen were meticulously investigated. The results indicated that heat treatments had minimal impact on grain size, dislocation density, and texture strength, but significantly altered the type, size, and distribution of precipitates. The differences in strength were primarily attributed to precipitation strengthening rather than grain boundary or dislocation strengthening. Following T6 heat treatment, the precipitates were predominantly η’, which were smaller in size and exhibited a significantly increased number density compared to AS specimen. Therefore, the average yield strength (YS) and ultimate tensile strength (UTS) increased by 39.51 % (500.21 MPa) and 15.84 % (584.26 MPa), respectively. In contrast, T73 treatment caused a substantial number of fine η’ to transform into coarser η, leading to a significant decrease in precipitate number density. Consequently, compared to T6 specimen, the average YS and UTS decreased by 47.19 % and 13.13 %, respectively.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved material properties of wire arc additively manufactured Al-Zn-mg-cu alloy through severe deformation interlayer friction stir processing and post-deposition heat treatment\",\"authors\":\"\",\"doi\":\"10.1016/j.matchar.2024.114487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, Al-Zn-Mg-Cu alloys were prepared by wire arc additive manufacturing (WAAM) combined with interlayer friction stir processing (IFSP). To enhance the FSP region, an improved stirring pin was designed to broaden the stir zone effectively. Moreover, the effects of typical T6 and T73 heat treatments on the microstructure and mechanical properties of as-deposited (AS) specimen were meticulously investigated. The results indicated that heat treatments had minimal impact on grain size, dislocation density, and texture strength, but significantly altered the type, size, and distribution of precipitates. The differences in strength were primarily attributed to precipitation strengthening rather than grain boundary or dislocation strengthening. Following T6 heat treatment, the precipitates were predominantly η’, which were smaller in size and exhibited a significantly increased number density compared to AS specimen. Therefore, the average yield strength (YS) and ultimate tensile strength (UTS) increased by 39.51 % (500.21 MPa) and 15.84 % (584.26 MPa), respectively. In contrast, T73 treatment caused a substantial number of fine η’ to transform into coarser η, leading to a significant decrease in precipitate number density. Consequently, compared to T6 specimen, the average YS and UTS decreased by 47.19 % and 13.13 %, respectively.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324008684\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008684","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过线弧快速成型(WAAM)结合层间摩擦搅拌加工(IFSP)制备了铝-锌-镁-铜合金。为了增强 FSP 区域,设计了一种改进的搅拌销,以有效扩大搅拌区域。此外,还仔细研究了典型的 T6 和 T73 热处理对沉积试样(AS)微观结构和机械性能的影响。结果表明,热处理对晶粒大小、位错密度和质地强度的影响很小,但对析出物的类型、大小和分布却有显著的改变。强度差异主要归因于析出强化,而不是晶界或位错强化。经过 T6 热处理后,析出物主要是 η',与 AS 试样相比,析出物的尺寸更小,数量密度显著增加。因此,平均屈服强度(YS)和极限抗拉强度(UTS)分别提高了 39.51 %(500.21 兆帕)和 15.84 %(584.26 兆帕)。相比之下,T73 处理使大量细小的 η' 转变为较粗的η,导致沉淀数量密度显著下降。因此,与 T6 试样相比,平均 YS 和 UTS 分别下降了 47.19 % 和 13.13 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved material properties of wire arc additively manufactured Al-Zn-mg-cu alloy through severe deformation interlayer friction stir processing and post-deposition heat treatment
In this study, Al-Zn-Mg-Cu alloys were prepared by wire arc additive manufacturing (WAAM) combined with interlayer friction stir processing (IFSP). To enhance the FSP region, an improved stirring pin was designed to broaden the stir zone effectively. Moreover, the effects of typical T6 and T73 heat treatments on the microstructure and mechanical properties of as-deposited (AS) specimen were meticulously investigated. The results indicated that heat treatments had minimal impact on grain size, dislocation density, and texture strength, but significantly altered the type, size, and distribution of precipitates. The differences in strength were primarily attributed to precipitation strengthening rather than grain boundary or dislocation strengthening. Following T6 heat treatment, the precipitates were predominantly η’, which were smaller in size and exhibited a significantly increased number density compared to AS specimen. Therefore, the average yield strength (YS) and ultimate tensile strength (UTS) increased by 39.51 % (500.21 MPa) and 15.84 % (584.26 MPa), respectively. In contrast, T73 treatment caused a substantial number of fine η’ to transform into coarser η, leading to a significant decrease in precipitate number density. Consequently, compared to T6 specimen, the average YS and UTS decreased by 47.19 % and 13.13 %, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Inkjet printing of silver/graphene flexible composite electrodes for high-performance supercapacitors Mo-Ni foam interlayer deposited pyrolytic carbon for brazing C/C and nickel-based superalloy Effects of heat input on microstructure evolution and corrosion resistance of underwater laser cladding high-strength low-alloy steel coating Microstructural and thermal relaxation of residual stress in dual peened TA15 titanium alloy fabricated by SLM Regulating hardness homogeneity and corrosion resistance of Al-Zn-Mg-Cu alloy via ECAP combined with inter-pass aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1