Prashant Kumar , Izaz Raouf , Jinwoo Song , Prince , Heung Soo Kim
{"title":"用于轴承故障诊断的多尺寸宽核卷积神经网络","authors":"Prashant Kumar , Izaz Raouf , Jinwoo Song , Prince , Heung Soo Kim","doi":"10.1016/j.advengsoft.2024.103799","DOIUrl":null,"url":null,"abstract":"<div><div>The bearing is an indispensable part of mechanical systems. Fault diagnosis of bearing faults is vital for uninterrupted operations of the system, and to prevent catastrophic failure. Artificial intelligence implementation has revolutionized the bearing fault diagnosis method. Application of deep learning has eliminated manual feature extraction and selection requirements. While conventional convolutional neural networks have demonstrated potential in diagnosing faults, considering a more extensive variety of spatial variables can further optimize their performance. This paper proposes a multi-wide-kernel convolutional neural network-based model for bearing fault diagnosis. We propose wide kernels in the neural network's convolutional layers, which enable the model to learn broader patterns from the input for bearing fault diagnosis. The wide-kernel design enables the network to obtain local and global features more effectively, improving the network's capacity to distinguish between healthy and faulty bearings. We train and validate the proposed multi-wide-kernel convolutional neural networks using an extensive dataset of vibration signals collected from bearings under diverse scenarios. Because of its increased sensitivity to subtle fault patterns, the proposed model offers better accuracy. The model's efficacy is further confirmed by comparing it with existing cutting-edge techniques for diagnosing bearing faults.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"198 ","pages":"Article 103799"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-size wide kernel convolutional neural network for bearing fault diagnosis\",\"authors\":\"Prashant Kumar , Izaz Raouf , Jinwoo Song , Prince , Heung Soo Kim\",\"doi\":\"10.1016/j.advengsoft.2024.103799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The bearing is an indispensable part of mechanical systems. Fault diagnosis of bearing faults is vital for uninterrupted operations of the system, and to prevent catastrophic failure. Artificial intelligence implementation has revolutionized the bearing fault diagnosis method. Application of deep learning has eliminated manual feature extraction and selection requirements. While conventional convolutional neural networks have demonstrated potential in diagnosing faults, considering a more extensive variety of spatial variables can further optimize their performance. This paper proposes a multi-wide-kernel convolutional neural network-based model for bearing fault diagnosis. We propose wide kernels in the neural network's convolutional layers, which enable the model to learn broader patterns from the input for bearing fault diagnosis. The wide-kernel design enables the network to obtain local and global features more effectively, improving the network's capacity to distinguish between healthy and faulty bearings. We train and validate the proposed multi-wide-kernel convolutional neural networks using an extensive dataset of vibration signals collected from bearings under diverse scenarios. Because of its increased sensitivity to subtle fault patterns, the proposed model offers better accuracy. The model's efficacy is further confirmed by comparing it with existing cutting-edge techniques for diagnosing bearing faults.</div></div>\",\"PeriodicalId\":50866,\"journal\":{\"name\":\"Advances in Engineering Software\",\"volume\":\"198 \",\"pages\":\"Article 103799\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965997824002060\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002060","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multi-size wide kernel convolutional neural network for bearing fault diagnosis
The bearing is an indispensable part of mechanical systems. Fault diagnosis of bearing faults is vital for uninterrupted operations of the system, and to prevent catastrophic failure. Artificial intelligence implementation has revolutionized the bearing fault diagnosis method. Application of deep learning has eliminated manual feature extraction and selection requirements. While conventional convolutional neural networks have demonstrated potential in diagnosing faults, considering a more extensive variety of spatial variables can further optimize their performance. This paper proposes a multi-wide-kernel convolutional neural network-based model for bearing fault diagnosis. We propose wide kernels in the neural network's convolutional layers, which enable the model to learn broader patterns from the input for bearing fault diagnosis. The wide-kernel design enables the network to obtain local and global features more effectively, improving the network's capacity to distinguish between healthy and faulty bearings. We train and validate the proposed multi-wide-kernel convolutional neural networks using an extensive dataset of vibration signals collected from bearings under diverse scenarios. Because of its increased sensitivity to subtle fault patterns, the proposed model offers better accuracy. The model's efficacy is further confirmed by comparing it with existing cutting-edge techniques for diagnosing bearing faults.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.