Jonas Miguel Priebe , Evandro L. Dall'Oglio , Leonardo Gomes de Vasconcelos , Paulo T. de Sousa Jr. , Andressa Alves Ramos , Emily Cristina O. da Silva , Carlos Alberto Kuhnen
{"title":"使用酸催化剂超声辅助巴巴苏油与醋酸盐的酯化反应,以生产生物柴油和三醋精","authors":"Jonas Miguel Priebe , Evandro L. Dall'Oglio , Leonardo Gomes de Vasconcelos , Paulo T. de Sousa Jr. , Andressa Alves Ramos , Emily Cristina O. da Silva , Carlos Alberto Kuhnen","doi":"10.1016/j.cep.2024.110028","DOIUrl":null,"url":null,"abstract":"<div><div>The ultrasound-assisted (US) interesterification of babassu oil with methyl, ethyl and butyl acetates was carried out via acid catalysis for biodiesel production with triacetin as an additive and therefore filling the gap in the field of US induced interesterification reactions. The scanning for the best catalyst was performed using sulfuric, methanesulfonic, p-toluenesulfonic, phosphoric and acetic acids. In order to achieve optimal conditions reactions varied in terms of reactant molar ratio, type and concentration of catalyst, temperature (20 to 50 °C) and ultrasonic energy (120 to 320 W). Using ethyl acetate, reactions were carried out at various molar ratios of oil to acetate (1:12 to 1:72) using sulfuric acid (0.5 % w/w<sub>T</sub>). The 1:60 experiments were carried out with sulfuric acid concentrations ranging from 0.5 % to 3 % (w/w<sub>T</sub>). The best catalytic activity was sought using the acids at a concentration of 2.5 %, with 200 W and 1:60. The best catalytic activities were achieved with H<sub>2</sub>SO<sub>4</sub> followed by CH<sub>3</sub>SO<sub>3</sub>H and CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>H and the reactivity follows the ethyl→methyl→butyl trend. The best results were achieved using ethyl acetate with H<sub>2</sub>SO<sub>4</sub> yielding 95.4 % biodiesel plus triacetin with a content of 17.6 % of triacetin in 180 min, which represents an intensification of 25.4 % compared to conventional heating.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"205 ","pages":"Article 110028"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound assisted interesterification of babassu oil with acetates using acid catalysts for biodiesel and triacetin production\",\"authors\":\"Jonas Miguel Priebe , Evandro L. Dall'Oglio , Leonardo Gomes de Vasconcelos , Paulo T. de Sousa Jr. , Andressa Alves Ramos , Emily Cristina O. da Silva , Carlos Alberto Kuhnen\",\"doi\":\"10.1016/j.cep.2024.110028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ultrasound-assisted (US) interesterification of babassu oil with methyl, ethyl and butyl acetates was carried out via acid catalysis for biodiesel production with triacetin as an additive and therefore filling the gap in the field of US induced interesterification reactions. The scanning for the best catalyst was performed using sulfuric, methanesulfonic, p-toluenesulfonic, phosphoric and acetic acids. In order to achieve optimal conditions reactions varied in terms of reactant molar ratio, type and concentration of catalyst, temperature (20 to 50 °C) and ultrasonic energy (120 to 320 W). Using ethyl acetate, reactions were carried out at various molar ratios of oil to acetate (1:12 to 1:72) using sulfuric acid (0.5 % w/w<sub>T</sub>). The 1:60 experiments were carried out with sulfuric acid concentrations ranging from 0.5 % to 3 % (w/w<sub>T</sub>). The best catalytic activity was sought using the acids at a concentration of 2.5 %, with 200 W and 1:60. The best catalytic activities were achieved with H<sub>2</sub>SO<sub>4</sub> followed by CH<sub>3</sub>SO<sub>3</sub>H and CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>SO<sub>3</sub>H and the reactivity follows the ethyl→methyl→butyl trend. The best results were achieved using ethyl acetate with H<sub>2</sub>SO<sub>4</sub> yielding 95.4 % biodiesel plus triacetin with a content of 17.6 % of triacetin in 180 min, which represents an intensification of 25.4 % compared to conventional heating.</div></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":\"205 \",\"pages\":\"Article 110028\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0255270124003660\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003660","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Ultrasound assisted interesterification of babassu oil with acetates using acid catalysts for biodiesel and triacetin production
The ultrasound-assisted (US) interesterification of babassu oil with methyl, ethyl and butyl acetates was carried out via acid catalysis for biodiesel production with triacetin as an additive and therefore filling the gap in the field of US induced interesterification reactions. The scanning for the best catalyst was performed using sulfuric, methanesulfonic, p-toluenesulfonic, phosphoric and acetic acids. In order to achieve optimal conditions reactions varied in terms of reactant molar ratio, type and concentration of catalyst, temperature (20 to 50 °C) and ultrasonic energy (120 to 320 W). Using ethyl acetate, reactions were carried out at various molar ratios of oil to acetate (1:12 to 1:72) using sulfuric acid (0.5 % w/wT). The 1:60 experiments were carried out with sulfuric acid concentrations ranging from 0.5 % to 3 % (w/wT). The best catalytic activity was sought using the acids at a concentration of 2.5 %, with 200 W and 1:60. The best catalytic activities were achieved with H2SO4 followed by CH3SO3H and CH3C6H4SO3H and the reactivity follows the ethyl→methyl→butyl trend. The best results were achieved using ethyl acetate with H2SO4 yielding 95.4 % biodiesel plus triacetin with a content of 17.6 % of triacetin in 180 min, which represents an intensification of 25.4 % compared to conventional heating.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.