Saranya V , Mervin Harris , Silpa Abraham , Ramanarayanan Venkitachalam , Shiv Shankar Nair , Anil Mathew
{"title":"对市售植入物中不同复杂宏观设计的应力分布进行三维有限元分析:体外研究","authors":"Saranya V , Mervin Harris , Silpa Abraham , Ramanarayanan Venkitachalam , Shiv Shankar Nair , Anil Mathew","doi":"10.1016/j.jobcr.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study aimed to investigate the effects of different commercially available complex implant macro designs on stress distributions using Finite element analysis. The experiment is done under varying simulated bone conditions to provide reference for clinical application.</div></div><div><h3>Materials and methods</h3><div>The study employed the Finite Element Analysis (FEA) method to compare four commercially available complex implant macro designs on a Computer-Aided Design (CAD) model of a maxillary bone segment. The three-dimensional geometrical model of the implants was reconstructed from computed tomography (CT)-slices in Digital Imaging and Communications in Medicine (DICOM) format and contact condition between the implant and the bone was considered as ‘Bonded’, implying perfect osseointegration. All materials used in the models were assumed to be isotropic, homogeneous, and linearly elastic. The Finite element simulations employed load of 400 N under both axial and non-axial conditions Stresses were analysed under different bone conditions.</div></div><div><h3>Results</h3><div>Average values of von Mises stresses were used for comparing stress levels between implant designs. There was a definite increase in the equivalent stress values from higher density(D1)to lower density (D4) bone conditions for all implants. The percentage of increase ranged from 23.63 to 49.39 on axial loading and 20.39 to 57.19 when subjected to non-axial loading. The equivalent stress values resulted from non-axial loading were 1.78–2.94 times higher than that of axial loading for all implants under all bone densities. Among the complex designs Equinox Myriad Plus implant exhibited the least stress under axial loading (12.749–19.046 MPa) and (37.462–49.217 MPa) for non-axial loading. The stress on the crestal module was higher (1.49–2.99 times) than the overall stress on the implant regardless of the loading direction or bone conditions.</div></div><div><h3>Conclusions</h3><div>Data from the present study shows Equinox Myriad Plus implant generating the least equivalent stress and this can be taken as indicator in the biomechanical performance of the design.</div></div>","PeriodicalId":16609,"journal":{"name":"Journal of oral biology and craniofacial research","volume":"14 6","pages":"Pages 761-766"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional finite element analysis of stress distribution on different complex macro designs in commercially available implants: An in-vitro study\",\"authors\":\"Saranya V , Mervin Harris , Silpa Abraham , Ramanarayanan Venkitachalam , Shiv Shankar Nair , Anil Mathew\",\"doi\":\"10.1016/j.jobcr.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>This study aimed to investigate the effects of different commercially available complex implant macro designs on stress distributions using Finite element analysis. The experiment is done under varying simulated bone conditions to provide reference for clinical application.</div></div><div><h3>Materials and methods</h3><div>The study employed the Finite Element Analysis (FEA) method to compare four commercially available complex implant macro designs on a Computer-Aided Design (CAD) model of a maxillary bone segment. The three-dimensional geometrical model of the implants was reconstructed from computed tomography (CT)-slices in Digital Imaging and Communications in Medicine (DICOM) format and contact condition between the implant and the bone was considered as ‘Bonded’, implying perfect osseointegration. All materials used in the models were assumed to be isotropic, homogeneous, and linearly elastic. The Finite element simulations employed load of 400 N under both axial and non-axial conditions Stresses were analysed under different bone conditions.</div></div><div><h3>Results</h3><div>Average values of von Mises stresses were used for comparing stress levels between implant designs. There was a definite increase in the equivalent stress values from higher density(D1)to lower density (D4) bone conditions for all implants. The percentage of increase ranged from 23.63 to 49.39 on axial loading and 20.39 to 57.19 when subjected to non-axial loading. The equivalent stress values resulted from non-axial loading were 1.78–2.94 times higher than that of axial loading for all implants under all bone densities. Among the complex designs Equinox Myriad Plus implant exhibited the least stress under axial loading (12.749–19.046 MPa) and (37.462–49.217 MPa) for non-axial loading. The stress on the crestal module was higher (1.49–2.99 times) than the overall stress on the implant regardless of the loading direction or bone conditions.</div></div><div><h3>Conclusions</h3><div>Data from the present study shows Equinox Myriad Plus implant generating the least equivalent stress and this can be taken as indicator in the biomechanical performance of the design.</div></div>\",\"PeriodicalId\":16609,\"journal\":{\"name\":\"Journal of oral biology and craniofacial research\",\"volume\":\"14 6\",\"pages\":\"Pages 761-766\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of oral biology and craniofacial research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212426824001507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oral biology and craniofacial research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212426824001507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Three-dimensional finite element analysis of stress distribution on different complex macro designs in commercially available implants: An in-vitro study
Objective
This study aimed to investigate the effects of different commercially available complex implant macro designs on stress distributions using Finite element analysis. The experiment is done under varying simulated bone conditions to provide reference for clinical application.
Materials and methods
The study employed the Finite Element Analysis (FEA) method to compare four commercially available complex implant macro designs on a Computer-Aided Design (CAD) model of a maxillary bone segment. The three-dimensional geometrical model of the implants was reconstructed from computed tomography (CT)-slices in Digital Imaging and Communications in Medicine (DICOM) format and contact condition between the implant and the bone was considered as ‘Bonded’, implying perfect osseointegration. All materials used in the models were assumed to be isotropic, homogeneous, and linearly elastic. The Finite element simulations employed load of 400 N under both axial and non-axial conditions Stresses were analysed under different bone conditions.
Results
Average values of von Mises stresses were used for comparing stress levels between implant designs. There was a definite increase in the equivalent stress values from higher density(D1)to lower density (D4) bone conditions for all implants. The percentage of increase ranged from 23.63 to 49.39 on axial loading and 20.39 to 57.19 when subjected to non-axial loading. The equivalent stress values resulted from non-axial loading were 1.78–2.94 times higher than that of axial loading for all implants under all bone densities. Among the complex designs Equinox Myriad Plus implant exhibited the least stress under axial loading (12.749–19.046 MPa) and (37.462–49.217 MPa) for non-axial loading. The stress on the crestal module was higher (1.49–2.99 times) than the overall stress on the implant regardless of the loading direction or bone conditions.
Conclusions
Data from the present study shows Equinox Myriad Plus implant generating the least equivalent stress and this can be taken as indicator in the biomechanical performance of the design.
期刊介绍:
Journal of Oral Biology and Craniofacial Research (JOBCR)is the official journal of the Craniofacial Research Foundation (CRF). The journal aims to provide a common platform for both clinical and translational research and to promote interdisciplinary sciences in craniofacial region. JOBCR publishes content that includes diseases, injuries and defects in the head, neck, face, jaws and the hard and soft tissues of the mouth and jaws and face region; diagnosis and medical management of diseases specific to the orofacial tissues and of oral manifestations of systemic diseases; studies on identifying populations at risk of oral disease or in need of specific care, and comparing regional, environmental, social, and access similarities and differences in dental care between populations; diseases of the mouth and related structures like salivary glands, temporomandibular joints, facial muscles and perioral skin; biomedical engineering, tissue engineering and stem cells. The journal publishes reviews, commentaries, peer-reviewed original research articles, short communication, and case reports.