管理对葡萄园根瘤菌组成和基因表达的影响

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-24 DOI:10.1016/j.rhisph.2024.100981
Maria Tartaglia, Monica Labella-Ortega, Maria Maisto, Antonello Prigioniero, Daniela Zuzolo, Carmine Guarino
{"title":"管理对葡萄园根瘤菌组成和基因表达的影响","authors":"Maria Tartaglia,&nbsp;Monica Labella-Ortega,&nbsp;Maria Maisto,&nbsp;Antonello Prigioniero,&nbsp;Daniela Zuzolo,&nbsp;Carmine Guarino","doi":"10.1016/j.rhisph.2024.100981","DOIUrl":null,"url":null,"abstract":"<div><div>This study examined rhizosphere soil samples from vineyards located in Sannio area, (Campania, Italy) with different management practices to assess the microbiota's functionality through a metatranscriptomic analysis. The analysis provided a comprehensive taxonomic characterization, gene expression insights, and predictive functional analyses. The experiment included 18 samples from three management-based groups (green manure, periodic hoeing, burying pruning) each with six biological replicates from two vineyards, yielding 316 Gb of data (17.5 Gb/sample). In the vineyards in which a green manure mix of Brassicaceae and Fabaceae was practised, the predominant bacterial phyla are Actinomycetota (with predominant families Conexibacteraceae and Nocardioidaceae), and Pseudomonadota (predominantly Nitrobacteraceae and Methylobacteriaceae). As regards the phylum Streptophyta, as expected, there is a greater abundance of transcripts from Vitaceae and Brassicaceae. About fungi, the most abundant phylum Ascomycota has predominantly Pyronemataceae and Pleosporaceae. Of particular interest related to this type of managment is the abundance of viral transcripts, with the most abundant phylum Pisuviricota and the families Secoviridae and Dicistroviridae. The most significantly up-regulated genes in these vineyards belonged to GO classes involved in viral infections and plant stress responses. In vineyards where regular tilling is carried out, a similar pattern but higher percentages of Actinobacteria and Lenarviricota were observed. In these samples, genes involved in phytohormone pathways (Jasmonic acid, Gibberellin, Salicylic acid) and root system development were up-expressed. Vineyards with a discordant taxonomic profile were those where pruning waste was routinely buried. This management practice was correlated with a marked increase in Nematoda transcripts. Gene expression and pathway enrichment analyses identified significant metabolic and signal transduction pathways associated with differentially expressed genes, highlighting how the rhizosphere is influenced by agricultural practices.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Management impacts rhizosphere composition and gene expression in vineyards\",\"authors\":\"Maria Tartaglia,&nbsp;Monica Labella-Ortega,&nbsp;Maria Maisto,&nbsp;Antonello Prigioniero,&nbsp;Daniela Zuzolo,&nbsp;Carmine Guarino\",\"doi\":\"10.1016/j.rhisph.2024.100981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examined rhizosphere soil samples from vineyards located in Sannio area, (Campania, Italy) with different management practices to assess the microbiota's functionality through a metatranscriptomic analysis. The analysis provided a comprehensive taxonomic characterization, gene expression insights, and predictive functional analyses. The experiment included 18 samples from three management-based groups (green manure, periodic hoeing, burying pruning) each with six biological replicates from two vineyards, yielding 316 Gb of data (17.5 Gb/sample). In the vineyards in which a green manure mix of Brassicaceae and Fabaceae was practised, the predominant bacterial phyla are Actinomycetota (with predominant families Conexibacteraceae and Nocardioidaceae), and Pseudomonadota (predominantly Nitrobacteraceae and Methylobacteriaceae). As regards the phylum Streptophyta, as expected, there is a greater abundance of transcripts from Vitaceae and Brassicaceae. About fungi, the most abundant phylum Ascomycota has predominantly Pyronemataceae and Pleosporaceae. Of particular interest related to this type of managment is the abundance of viral transcripts, with the most abundant phylum Pisuviricota and the families Secoviridae and Dicistroviridae. The most significantly up-regulated genes in these vineyards belonged to GO classes involved in viral infections and plant stress responses. In vineyards where regular tilling is carried out, a similar pattern but higher percentages of Actinobacteria and Lenarviricota were observed. In these samples, genes involved in phytohormone pathways (Jasmonic acid, Gibberellin, Salicylic acid) and root system development were up-expressed. Vineyards with a discordant taxonomic profile were those where pruning waste was routinely buried. This management practice was correlated with a marked increase in Nematoda transcripts. Gene expression and pathway enrichment analyses identified significant metabolic and signal transduction pathways associated with differentially expressed genes, highlighting how the rhizosphere is influenced by agricultural practices.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452219824001368\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824001368","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究对位于意大利坎帕尼亚桑尼奥地区的葡萄园根瘤土壤样本进行了研究,这些样本采用了不同的管理方法,通过元转录组分析评估了微生物群的功能。该分析提供了全面的分类特征、基因表达见解和预测性功能分析。实验包括来自两个葡萄园的三个管理组(绿肥、定期锄草、掩埋修剪)的 18 个样本,每个组有六个生物重复,共产生 316 Gb 的数据(17.5 Gb/样本)。在混合使用十字花科和豆科植物绿肥的葡萄园中,主要细菌门为放线菌门(主要为锥形杆菌科和野卡氏菌科)和假单胞菌门(主要为硝化细菌科和甲基杆菌科)。至于担子菌门,正如预期的那样,葡萄科和十字花科的转录本较多。在真菌门中,数量最多的是子囊菌门(Ascomycota),主要是鞭毛菌科(Pyronemataceae)和褶孢菌科(Pleosporaceae)。与这类管理有关的一个特别值得关注的问题是病毒转录本的丰富程度,其中最丰富的是半知菌门(Pisuviricota)以及 Secoviridae 和 Dicistroviridae 科。这些葡萄园中上调最明显的基因属于涉及病毒感染和植物胁迫反应的 GO 类。在定期翻耕的葡萄园中,观察到了类似的模式,但放线菌和Lenarviricota的比例更高。在这些样本中,参与植物激素途径(茉莉酸、赤霉素、水杨酸)和根系发育的基因表达量增加。那些经常掩埋修剪废料的葡萄园,其分类学特征不一致。这种管理方法与线虫转录本的显著增加有关。基因表达和通路富集分析确定了与差异表达基因相关的重要代谢和信号转导通路,突显了根瘤菌如何受到农业实践的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Management impacts rhizosphere composition and gene expression in vineyards
This study examined rhizosphere soil samples from vineyards located in Sannio area, (Campania, Italy) with different management practices to assess the microbiota's functionality through a metatranscriptomic analysis. The analysis provided a comprehensive taxonomic characterization, gene expression insights, and predictive functional analyses. The experiment included 18 samples from three management-based groups (green manure, periodic hoeing, burying pruning) each with six biological replicates from two vineyards, yielding 316 Gb of data (17.5 Gb/sample). In the vineyards in which a green manure mix of Brassicaceae and Fabaceae was practised, the predominant bacterial phyla are Actinomycetota (with predominant families Conexibacteraceae and Nocardioidaceae), and Pseudomonadota (predominantly Nitrobacteraceae and Methylobacteriaceae). As regards the phylum Streptophyta, as expected, there is a greater abundance of transcripts from Vitaceae and Brassicaceae. About fungi, the most abundant phylum Ascomycota has predominantly Pyronemataceae and Pleosporaceae. Of particular interest related to this type of managment is the abundance of viral transcripts, with the most abundant phylum Pisuviricota and the families Secoviridae and Dicistroviridae. The most significantly up-regulated genes in these vineyards belonged to GO classes involved in viral infections and plant stress responses. In vineyards where regular tilling is carried out, a similar pattern but higher percentages of Actinobacteria and Lenarviricota were observed. In these samples, genes involved in phytohormone pathways (Jasmonic acid, Gibberellin, Salicylic acid) and root system development were up-expressed. Vineyards with a discordant taxonomic profile were those where pruning waste was routinely buried. This management practice was correlated with a marked increase in Nematoda transcripts. Gene expression and pathway enrichment analyses identified significant metabolic and signal transduction pathways associated with differentially expressed genes, highlighting how the rhizosphere is influenced by agricultural practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1