{"title":"用于毛细管箱式热交换器瞬态模拟的热阻容量模型","authors":"","doi":"10.1016/j.csite.2024.105321","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a novel simplified hybrid model is developed to simulate the transient thermal behaviors of capillary-box heat exchangers (CBHEs) buried in the seabed, serving as the front-end heat exchangers in seawater source heat pump system (SWHPs). The thermal resistance and capacity (TRC) approach is applied for derivation of the governing equations inside and outside the heat exchangers. Also, an analytical solution is integrated to model heat transfer in the seabed base. The effects of seawater seepage on the thermal performance of CBHEs are taken into account in the present model. The state-space representation is used to solve the governing equations. The model is verified against experimental data, achieving very good agreement with the mean bias error (<em>MBE</em>) of 7.2 %. A comparison with a three-dimensional computational fluid dynamic (CFD) model indicates that the TRC model's maximum relative error and <em>MBE</em> are 0.7 % and 2.0 % lower than those of the CFD model. Additionally, the ratio of the time required by the CFD and TRC models for a 31-day run was 138. These results demonstrate that the TRC model is sufficiently accurate and fast in the thermal simulation of CBHEs. Furthermore, the thermal properties of CBHEs are examined using the present model. The model in this study provides practical implications for heat transfer analysis and design improvement of CBHEs utilized in SWHPs.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal resistance capacity model for transient simulation of capillary-box heat exchangers\",\"authors\":\"\",\"doi\":\"10.1016/j.csite.2024.105321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a novel simplified hybrid model is developed to simulate the transient thermal behaviors of capillary-box heat exchangers (CBHEs) buried in the seabed, serving as the front-end heat exchangers in seawater source heat pump system (SWHPs). The thermal resistance and capacity (TRC) approach is applied for derivation of the governing equations inside and outside the heat exchangers. Also, an analytical solution is integrated to model heat transfer in the seabed base. The effects of seawater seepage on the thermal performance of CBHEs are taken into account in the present model. The state-space representation is used to solve the governing equations. The model is verified against experimental data, achieving very good agreement with the mean bias error (<em>MBE</em>) of 7.2 %. A comparison with a three-dimensional computational fluid dynamic (CFD) model indicates that the TRC model's maximum relative error and <em>MBE</em> are 0.7 % and 2.0 % lower than those of the CFD model. Additionally, the ratio of the time required by the CFD and TRC models for a 31-day run was 138. These results demonstrate that the TRC model is sufficiently accurate and fast in the thermal simulation of CBHEs. Furthermore, the thermal properties of CBHEs are examined using the present model. The model in this study provides practical implications for heat transfer analysis and design improvement of CBHEs utilized in SWHPs.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24013522\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24013522","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Thermal resistance capacity model for transient simulation of capillary-box heat exchangers
In this paper, a novel simplified hybrid model is developed to simulate the transient thermal behaviors of capillary-box heat exchangers (CBHEs) buried in the seabed, serving as the front-end heat exchangers in seawater source heat pump system (SWHPs). The thermal resistance and capacity (TRC) approach is applied for derivation of the governing equations inside and outside the heat exchangers. Also, an analytical solution is integrated to model heat transfer in the seabed base. The effects of seawater seepage on the thermal performance of CBHEs are taken into account in the present model. The state-space representation is used to solve the governing equations. The model is verified against experimental data, achieving very good agreement with the mean bias error (MBE) of 7.2 %. A comparison with a three-dimensional computational fluid dynamic (CFD) model indicates that the TRC model's maximum relative error and MBE are 0.7 % and 2.0 % lower than those of the CFD model. Additionally, the ratio of the time required by the CFD and TRC models for a 31-day run was 138. These results demonstrate that the TRC model is sufficiently accurate and fast in the thermal simulation of CBHEs. Furthermore, the thermal properties of CBHEs are examined using the present model. The model in this study provides practical implications for heat transfer analysis and design improvement of CBHEs utilized in SWHPs.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.