{"title":"基于记忆依赖高阶导数概念的广义精炼摩尔-吉布森-汤普森热弹性模型","authors":"","doi":"10.1016/j.csite.2024.105291","DOIUrl":null,"url":null,"abstract":"<div><div>The inclusion of memory-dependent derivatives (MDD) in constitutive models improves the ability to predict and analyze time-dependent responses of materials, providing a more detailed depiction of their mechanical properties and structural changes. In this paper, a new thermoelasticity model is created that combines the Moore-Gibson-Thompson (MGT) equation with higher-order memory-dependent derivatives (MDD), any optional kernel function, and time delay. The objective of this model is to provide a more accurate mathematical depiction of the thermal and mechanical reactions of materials, particularly those that exhibit complex behaviors over time. A theoretical study was conducted to provide additional clarification of the proposed concept. For this purpose, thermal-mechanical waves were studied in a semi-infinite region, surrounded by a magnetic field, and exposed to a direct heat source uniformly distributed on its outer surface. To solve the coupled partial differential equations governing the system, the Laplace transform methodology was used. The effects of different kernel functions, time delays, and higher-order (HO) derivatives on the behavior of thermoelastic materials are discussed and illustrated using figures and tables.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized refined Moore–Gibson–Thompson thermoelastic model based on the concept of memory-dependent higher-order derivatives\",\"authors\":\"\",\"doi\":\"10.1016/j.csite.2024.105291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The inclusion of memory-dependent derivatives (MDD) in constitutive models improves the ability to predict and analyze time-dependent responses of materials, providing a more detailed depiction of their mechanical properties and structural changes. In this paper, a new thermoelasticity model is created that combines the Moore-Gibson-Thompson (MGT) equation with higher-order memory-dependent derivatives (MDD), any optional kernel function, and time delay. The objective of this model is to provide a more accurate mathematical depiction of the thermal and mechanical reactions of materials, particularly those that exhibit complex behaviors over time. A theoretical study was conducted to provide additional clarification of the proposed concept. For this purpose, thermal-mechanical waves were studied in a semi-infinite region, surrounded by a magnetic field, and exposed to a direct heat source uniformly distributed on its outer surface. To solve the coupled partial differential equations governing the system, the Laplace transform methodology was used. The effects of different kernel functions, time delays, and higher-order (HO) derivatives on the behavior of thermoelastic materials are discussed and illustrated using figures and tables.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24013224\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24013224","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
A generalized refined Moore–Gibson–Thompson thermoelastic model based on the concept of memory-dependent higher-order derivatives
The inclusion of memory-dependent derivatives (MDD) in constitutive models improves the ability to predict and analyze time-dependent responses of materials, providing a more detailed depiction of their mechanical properties and structural changes. In this paper, a new thermoelasticity model is created that combines the Moore-Gibson-Thompson (MGT) equation with higher-order memory-dependent derivatives (MDD), any optional kernel function, and time delay. The objective of this model is to provide a more accurate mathematical depiction of the thermal and mechanical reactions of materials, particularly those that exhibit complex behaviors over time. A theoretical study was conducted to provide additional clarification of the proposed concept. For this purpose, thermal-mechanical waves were studied in a semi-infinite region, surrounded by a magnetic field, and exposed to a direct heat source uniformly distributed on its outer surface. To solve the coupled partial differential equations governing the system, the Laplace transform methodology was used. The effects of different kernel functions, time delays, and higher-order (HO) derivatives on the behavior of thermoelastic materials are discussed and illustrated using figures and tables.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.