{"title":"非稀疏性高维线性模型的贝叶斯分组-吉布斯抽样估计","authors":"Shanshan Qin , Guanlin Zhang , Yuehua Wu , Zhongyi Zhu","doi":"10.1016/j.csda.2024.108072","DOIUrl":null,"url":null,"abstract":"<div><div>In high-dimensional linear regression models, common assumptions typically entail sparsity of regression coefficients <span><math><mi>β</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. However, these assumptions may not hold when the majority, if not all, of regression coefficients are non-zeros. Statistical methods designed for sparse models may lead to substantial bias in model estimation. Therefore, this article proposes a novel Bayesian Grouping-Gibbs Sampling (BGGS) method, which departs from the common sparse assumptions in high-dimensional problems. The BGGS method leverages a grouping strategy that partitions <strong><em>β</em></strong> into distinct groups, facilitating rapid sampling in high-dimensional space. The grouping number (<em>k</em>) can be determined using the ‘Elbow plot’, which operates efficiently and is robust against the initial value. Theoretical analysis, under some regular conditions, guarantees model selection and parameter estimation consistency, and bound for the prediction error. Furthermore, three finite simulations are conducted to assess the competitive advantages of the proposed method in terms of parameter estimation and prediction accuracy. Finally, the BGGS method is applied to a financial dataset to explore its practical utility.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian grouping-Gibbs sampling estimation of high-dimensional linear model with non-sparsity\",\"authors\":\"Shanshan Qin , Guanlin Zhang , Yuehua Wu , Zhongyi Zhu\",\"doi\":\"10.1016/j.csda.2024.108072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In high-dimensional linear regression models, common assumptions typically entail sparsity of regression coefficients <span><math><mi>β</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. However, these assumptions may not hold when the majority, if not all, of regression coefficients are non-zeros. Statistical methods designed for sparse models may lead to substantial bias in model estimation. Therefore, this article proposes a novel Bayesian Grouping-Gibbs Sampling (BGGS) method, which departs from the common sparse assumptions in high-dimensional problems. The BGGS method leverages a grouping strategy that partitions <strong><em>β</em></strong> into distinct groups, facilitating rapid sampling in high-dimensional space. The grouping number (<em>k</em>) can be determined using the ‘Elbow plot’, which operates efficiently and is robust against the initial value. Theoretical analysis, under some regular conditions, guarantees model selection and parameter estimation consistency, and bound for the prediction error. Furthermore, three finite simulations are conducted to assess the competitive advantages of the proposed method in terms of parameter estimation and prediction accuracy. Finally, the BGGS method is applied to a financial dataset to explore its practical utility.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001567\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001567","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bayesian grouping-Gibbs sampling estimation of high-dimensional linear model with non-sparsity
In high-dimensional linear regression models, common assumptions typically entail sparsity of regression coefficients . However, these assumptions may not hold when the majority, if not all, of regression coefficients are non-zeros. Statistical methods designed for sparse models may lead to substantial bias in model estimation. Therefore, this article proposes a novel Bayesian Grouping-Gibbs Sampling (BGGS) method, which departs from the common sparse assumptions in high-dimensional problems. The BGGS method leverages a grouping strategy that partitions β into distinct groups, facilitating rapid sampling in high-dimensional space. The grouping number (k) can be determined using the ‘Elbow plot’, which operates efficiently and is robust against the initial value. Theoretical analysis, under some regular conditions, guarantees model selection and parameter estimation consistency, and bound for the prediction error. Furthermore, three finite simulations are conducted to assess the competitive advantages of the proposed method in terms of parameter estimation and prediction accuracy. Finally, the BGGS method is applied to a financial dataset to explore its practical utility.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.