{"title":"非稀疏性高维线性模型的贝叶斯分组-吉布斯抽样估计","authors":"Shanshan Qin , Guanlin Zhang , Yuehua Wu , Zhongyi Zhu","doi":"10.1016/j.csda.2024.108072","DOIUrl":null,"url":null,"abstract":"<div><div>In high-dimensional linear regression models, common assumptions typically entail sparsity of regression coefficients <span><math><mi>β</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. However, these assumptions may not hold when the majority, if not all, of regression coefficients are non-zeros. Statistical methods designed for sparse models may lead to substantial bias in model estimation. Therefore, this article proposes a novel Bayesian Grouping-Gibbs Sampling (BGGS) method, which departs from the common sparse assumptions in high-dimensional problems. The BGGS method leverages a grouping strategy that partitions <strong><em>β</em></strong> into distinct groups, facilitating rapid sampling in high-dimensional space. The grouping number (<em>k</em>) can be determined using the ‘Elbow plot’, which operates efficiently and is robust against the initial value. Theoretical analysis, under some regular conditions, guarantees model selection and parameter estimation consistency, and bound for the prediction error. Furthermore, three finite simulations are conducted to assess the competitive advantages of the proposed method in terms of parameter estimation and prediction accuracy. Finally, the BGGS method is applied to a financial dataset to explore its practical utility.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"203 ","pages":"Article 108072"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian grouping-Gibbs sampling estimation of high-dimensional linear model with non-sparsity\",\"authors\":\"Shanshan Qin , Guanlin Zhang , Yuehua Wu , Zhongyi Zhu\",\"doi\":\"10.1016/j.csda.2024.108072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In high-dimensional linear regression models, common assumptions typically entail sparsity of regression coefficients <span><math><mi>β</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. However, these assumptions may not hold when the majority, if not all, of regression coefficients are non-zeros. Statistical methods designed for sparse models may lead to substantial bias in model estimation. Therefore, this article proposes a novel Bayesian Grouping-Gibbs Sampling (BGGS) method, which departs from the common sparse assumptions in high-dimensional problems. The BGGS method leverages a grouping strategy that partitions <strong><em>β</em></strong> into distinct groups, facilitating rapid sampling in high-dimensional space. The grouping number (<em>k</em>) can be determined using the ‘Elbow plot’, which operates efficiently and is robust against the initial value. Theoretical analysis, under some regular conditions, guarantees model selection and parameter estimation consistency, and bound for the prediction error. Furthermore, three finite simulations are conducted to assess the competitive advantages of the proposed method in terms of parameter estimation and prediction accuracy. Finally, the BGGS method is applied to a financial dataset to explore its practical utility.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"203 \",\"pages\":\"Article 108072\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001567\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001567","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bayesian grouping-Gibbs sampling estimation of high-dimensional linear model with non-sparsity
In high-dimensional linear regression models, common assumptions typically entail sparsity of regression coefficients . However, these assumptions may not hold when the majority, if not all, of regression coefficients are non-zeros. Statistical methods designed for sparse models may lead to substantial bias in model estimation. Therefore, this article proposes a novel Bayesian Grouping-Gibbs Sampling (BGGS) method, which departs from the common sparse assumptions in high-dimensional problems. The BGGS method leverages a grouping strategy that partitions β into distinct groups, facilitating rapid sampling in high-dimensional space. The grouping number (k) can be determined using the ‘Elbow plot’, which operates efficiently and is robust against the initial value. Theoretical analysis, under some regular conditions, guarantees model selection and parameter estimation consistency, and bound for the prediction error. Furthermore, three finite simulations are conducted to assess the competitive advantages of the proposed method in terms of parameter estimation and prediction accuracy. Finally, the BGGS method is applied to a financial dataset to explore its practical utility.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]